期刊文献+

基于复合反演算法的结构损伤识别及地震动反演研究 被引量:2

Structural damage identification and ground motion inversion based on hybrid inversion algorithm
下载PDF
导出
摘要 针对输入激励信息未知、输出响应信息非完备的情况,进行了结构损伤识别算法研究。基于物理参数时域识别的复合反演算法,定义单元刚度参数变化率为损伤因子,并引入矩形窗方法剔除噪声异常数据,给出了时域内结构损伤识别复合反演算法(损伤识别和地震动反演)。以一个5层框架结构为例进行了数值仿真识别损伤,针对矩形窗长度、噪声水平不同等情况对比了识别结果(损伤识别精度、损伤位置确定)和收敛速度,并比较了反演的地震动与真实地震动时程曲线。研究表明,所提基于复合反演算法建立的结构损伤识别复合反演算法是非常有效的。 In this paper, structural damage identification algorithm was studied for the case with unknown input and incomplete output dynamic response information. Based on the hybrid inversion method for physical parameter iden- tification in time domain, the change rate of element stiffness being defined as the damage factor, lar window method being introduced for removing the abnormal noise data, a hybrid inversion and ground motion inversion) of structural damage indentification in time domain was proposed. and the rectangu- ( damage detection A numerical simu- lation of 5 - stories frame model was conducted. Considering the different lengths of rectangular window and the dif- ferent noise levels, the identification result (damage identification accuracy and damage location) and convergence rate were compared. Simultaneously, the time - histories of ground motion inversion are compared with those of the real ground motion. The results show that the hybrid inversion algorithm established in the paper for structural dam- age identification and ground motion inversion is very effective.
出处 《世界地震工程》 CSCD 北大核心 2015年第3期114-121,共8页 World Earthquake Engineering
基金 国家自然科学基金(青年科学基金)项目(编号:51208478)资助 中国地震局工程力学研究所基本科研业务费专项资助(编号:2013B07)
关键词 损伤识别 地震动反演 复合反演识别算法 矩形窗法 damage identification ground motion inversion hybrid inversion method rectangular window method
  • 相关文献

参考文献9

  • 1West WM. Illustration of the use of modal assurance criterion to detect structural changes in an orbiter test specimen [J].1986.
  • 2Salawu OS. Detection of structural damage through changes in frequency: a review [ J ]. Engineering structures, 1997, 19 (9) : 718 -723.
  • 3Park YS. Weighted- error- matrix application to detect stiffness damage by dynamic- characteristic measurement [ J]. 1988.
  • 4李国强,郝坤超,陆烨.弯剪型悬臂结构损伤识别的柔度法[J].地震工程与工程振动,1999,19(1):31-37. 被引量:9
  • 5姜绍飞,刘明,倪一清,高赞明.大跨悬索桥损伤定位的自适应概率神经网络研究[J].土木工程学报,2003,36(8):74-78. 被引量:19
  • 6Adams RD, Wal~n D, FlitcroftJE, et M. Vibration testing asa nondestructive testtool ~r composite m~enals[J]. Composite Reliability, ASTM STP, 1975, 580:159 -175.
  • 7VandNer JK. Detecfionofstructur~ failure on fixed plaffomls by measurement ofdynamm response[J]. JoumMofPe~oleum Technology, 1977, 29(03): 305 -310.
  • 8Kennedy J. Particle swarm optimization [ M ]//Encyclopedia of Machine Learning. Springer US, 2010:760 -766.
  • 9李杰,陈隽.结构参数未知条件下的地震动反演研究[J].地震工程与工程振动,1997,17(3):27-35. 被引量:39

二级参考文献25

  • 1李洪泉,欧进萍.剪切型钢筋混凝土结构的地震损伤识别方法[J].哈尔滨建筑大学学报,1996,29(2):8-12. 被引量:19
  • 2李国强 李杰 等.高层建筑检测-方法研究及应用.国家樊登B计划《高层建筑安全性检测与监测系统》研究报告之5[M].,1995,12..
  • 3陈隽.郑州工学院硕士论文[M].,1996,3..
  • 4李国强 郝坤超 等.结构模型动力特性试验研究.国家樊登B计划《高层建筑安全性检测与监测系统》研究报告之7[M].,1996,12..
  • 5Sohn H and Law K H. A Bayesian pmbabilistic approach for structure damage detection. Earthquake Engineering and Structural Dynamics, 1997, 26:1259 -1281.
  • 6Ko J M, Ni Y Q Chart T H T. Feasibility of damage detection of Tsing Ma Bridge using vibration measurements. In: A E Aktan and S R Gosselin (eds.) Nondestructive Evaluation of Highways, Utilities, and Pipelines IV, 3995. Newport Beach: SPIE, 2000. 370- 381.
  • 7Chen C H. Fuzzy logic and neural network handbook. New York: McGraw-Hill, 1996.
  • 8Masters T. Advanced Algorithms for Neural Networks: A C + + Sourcebook. Chiehester: John Wiley & Sons, 1995.
  • 9Ward Systems Group, Inc NeuroShell Classifier. Frederick, Maryland, 1997.
  • 10Ko J M, Ni Y Q and Chart T H T. Dynamic monitoring of structural health in cable -supported bridges. In: S C Liu (eds.). Smart Systems for Bridges, Structures, and Highways. Newport Beach: SPIE, 1999, 3671:161-172.

共引文献63

同被引文献16

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部