期刊文献+

白海棠不同类型枝条光合能力比较研究 被引量:2

Study on Photosynthetic Ability of Different Shoot Types of White Crabapple
下载PDF
导出
摘要 为比较不同类型白海棠枝条光合能力的差异,以白海棠为试材,通过试验测定和数学模拟的方法研究长枝、中枝和短枝的光合能力差异。长枝、中枝和短枝的最大光合速率分别为16.3、14.5、9.68μmol/(m2·s),光量子效率分别为0.053、0.047、0.042μmol/μmol,这说明长枝的光合能力最强,其次为中枝和短枝。计算表明,在高辐射条件下[PAR=1500μmol/(m2·s)],单位地面上长枝叶片的。光合总量为18.82μmol/(m2·s),占整个树冠的73.15%,中枝和短枝只有5.19、1.73μmol/(m2·s)。研究表明,长枝叶片的光合总量最大,这与其较强的光合能力和较大的叶面积有关。 The study aims to explore and compare the photosynthetic ability of different shoot types of whitecrabapple. The ability of photosynthesis of shoot type of white crabapple was studied by measurement andmathematical simulation. The maximal photosynthetic rate of long shoot, middle shoot and short shoot was16.3, 14.5 and 9.68 μmol/(m^2·s), respectively; and the quanta efficiency of photosynthesis of the three shoottypes was 0.053, 0.047 and 0.042 μmol/μmol, respectively. The results showed that the photosynthesis abilityof long shoot was higher than that of middle and short shoot. The total photosynthesis per unit grand area was18.82, 5.19 and 1.73 μmol/(m^2·s) of long shoot, middle shoot and short shoot, respectively, with PAR equal to1500 μmol/(m^2·s) on the top canopy. The results indicated that long shoot was conducive to improve fruit treephotosynthesis(about 73.15%) with high photosynthetic rate and leaf area.
出处 《中国农学通报》 2015年第25期90-95,共6页 Chinese Agricultural Science Bulletin
基金 北京市农委项目"山区白海棠景观式果园的建立与示范"(20140137) 北京市农委项目"山区白海棠特色产业基地的建立与示范"(20140204-6) 北京农业职业学院项目"白海棠高效栽培技术集成与示范"(XY-YF-13-02)
关键词 白海棠 枝条类型 光合作用 最大光合速率 光量子效率 crabapple shoot type photosynthesis maximum photosynthesis quanta efficiency of photosynthesis
  • 相关文献

参考文献25

  • 1Restrepo-Diaz'H, Melgar J C, Lombardini L. Ecophysiology of horticultural crops: an overview[J]. Agronomia Colombiana,2010,28 (1):71-79.
  • 2高照全,赵晨霞,程建军,张显川.我国4种主要苹果树形冠层结构和辐射三维分布比较研究[J].中国生态农业学报,2012,20(1):63-68. 被引量:14
  • 3Cherbiy-Hoffmann S U, Hall A J, Rousseaux M C. Fruit, yield, and vegetative growth responses to photosynthetically active radiationduring oil synthesis in olive treas[J]. Sci Hortic,2013,150(4):110- 116.
  • 4Wiinsche J N, Lakso A N. Apple tree physiology--implications for orchard and tree management. IDFTA proceedings[J]. Compact Fruit Tree,2000,33:82-88.
  • 5Wiinsche J N, Lakso A N, Robinson T L, et aL The bases of productivity in apple production systems: The role of light interception by different shoot types[y]. J Amer Soc Hort Sci,1996, 121:886-893.
  • 6高照全,赵晨霞,张显川,冯社章.苹果三维树冠的净光合速率分布模拟[J].生态学报,2012,32(21):6688-6694. 被引量:10
  • 7Higgins S S, Larsen F E, Bendel R B, et al. Comparative gas exchange characteristics of potted, glasshouse-grown almond, apple, fig, grape, olive, peach and Asian pear[J]. Sci Hortic,1992,52: 313-329.
  • 8杜占池,杨宗贵.十种草原植物光合速率与光照的关系[J].生态学报,1988,8(4):319-323.
  • 9Johnson I R, Parsons A J, Ludlow M M. Modelling photosynthesis in monocultures and mixtures[J]. Aust J Plant Physiol,1989,16(6): 501-516.
  • 10Duursma R A, Falster D S, Valladares F, et al. Light interception efficiency explained by two simple variables: a test using a diversity of small- to medium-sized woody plants[J]. New Phytol, 2012,193(2):397-408.

二级参考文献103

共引文献118

同被引文献50

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部