期刊文献+

基于吸引场的蚁群算法在TSP中的应用 被引量:7

Application of an ant colony optimization based on attractive field in TSP
下载PDF
导出
摘要 针对传统蚁群算法容易陷入局部最优解等缺陷,提出了一种基于吸引场的改进的蚁群算法.首先,详细分析了基于信息素的吸引场原理,在此基础上建立了基于信息素的吸引场模型.其次,设计了吸引场因子,给出了信息素更新策略,使相距较近的蚂蚁之间能更好地进行协作.最后,针对标准的30个城市的旅行商问题,使用所提出的算法与基本蚁群算法、其他改进的蚁群算法进行优化分析,并进行了结果对比.结果表明:所提出的蚁群算法可以获得TSP问题的最优解423.74,Oliver30问题计算结果最优值为423.74,平均值为423.96,具有较好的搜索全局最优解的能力. To overcome the default of local optimal solution in the traditional ant colony algorithm,a modified ant colony optimization( AFACO) was proposed based on attractive field. The principle of attraction field based on pheromone was analyzed in detail to establish the attractive field model. The attractive field factor based on pheromone was designed,and the pheromone updating strategy was provided to improve the collaboration among ants nearby. For the standard 30 city traveling salesman problem,the optimization results from the proposed algorithm were compared with those from basic ant colony algorithm and some other improved ant colony. The results show that the optimal solution of TSP problem is 423. 74,while the optimal and the mean solution of Oliver30 are 423. 74 and 423. 96,respectively,which shows the improved ant colony algorithm has good ability for searching the global optimal solution.
出处 《江苏大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第5期573-577,582,共6页 Journal of Jiangsu University:Natural Science Edition
基金 国家自然科学基金资助项目(51305001 71171002) 安徽省自然科学基金资助项目(1308085ME65) 安徽省高等教育提升计划省级自然科学研究项目(TSKJ2014B12)
关键词 路径规划 旅行商问题 蚁群算法 信息素 吸引场 path planning travelling salesman problem ant colony optimization pheromone attractive field
  • 相关文献

参考文献13

  • 1LiaoTJ, Sttitzle T, de Oca M A M, et al. A unified ant colony optimization algorithm for continuous optimi- zation I J l- European Journal of Operational Research, 2014, 234 (3) : 597 - 609.
  • 2WuWH, ChengSR, WuC C, etal. Ant colony algo- rithms for a two-agent scheduling with sum-of processing times-based learning and deteriorating considerations [J]. Journal of Intelligent Manufacturing, 2012, 23 (5) :1985 - 1993.
  • 3Wang Lei, Tang Dunbing, Gu Wenbin, et al. Phero- mone-based coordination for manufacturing system con- trol I J l- Journal of Intelligent Manufacturing, 2012, 23 (3) : 747 - 757.
  • 4黄晓玮,邹小波,赵杰文,石吉勇,张小磊.近红外光谱结合蚁群算法检测花茶花青素含量[J].江苏大学学报(自然科学版),2014,35(2):165-170. 被引量:9
  • 5覃志东,侯颖,肖芳雄.基于蚁群优化算法的同构多核任务分配与调度[J].江苏大学学报(自然科学版),2014,35(6):679-684. 被引量:8
  • 6Xiao Jing, Li Liangping. A hybrid ant colony optimiza- tion for continuous domains [ J ]. Expert Systems with Applications, 2011, 38 (9) : 11072 - 11077.
  • 7Hannaneh Rashidi, Reza Zanjirani Farahani. A hybrid ant colony system for partially dynamic vehicle routing problem [ J ]. American Journal of Operational Re- search, 2012, 2(4): 31 -44.
  • 8Mavrovouniotis Michalis, Yang Shengxiang. A memetic ant colony optimization algorithm for the dynamictravel- ling salesman problem [ J ]. Soft Computing, 2011, 15 ( 7 ) : 1405 - 1425.
  • 9张敬敏,马丽,李媛媛.求解TSP问题的改进混合蛙跳算法[J].计算机工程与应用,2012,48(11):47-50. 被引量:5
  • 10黄国锐,曹先彬,王煦法.基于信息素扩散的蚁群算法[J].电子学报,2004,32(5):865-868. 被引量:76

二级参考文献69

  • 1方世辉,徐国谦,夏涛,宛晓春.花茶窨制中几个主要因子对花茶香气的影响[J].安徽农业大学学报,2004,31(4):440-445. 被引量:23
  • 2魏平,李利杰,熊伟清.求解TSP问题的一种混合遗传算法[J].计算机工程与应用,2005,41(12):70-73. 被引量:11
  • 3刘烨,倪志伟,刘慧婷.求解旅行商问题的一个改进的遗传算法[J].计算机工程与应用,2007,43(6):65-68. 被引量:9
  • 4王宇平,李英华.求解TSP的量子遗传算法[J].计算机学报,2007,30(5):748-755. 被引量:71
  • 5施仁杰.马尔可夫链基础及应用[M].西安:西安电子科技大学出版社,1994..
  • 6[1]Cdomi A,Dorigo M,Maniezzo V.An investigation of some properties of aIl ant algorithm.Proc of the Parallel Problem Solving from Nature Conference(PPSN'92).Bmssels,Belgium:Elsevier Publishing,1992;509-520
  • 7[4]Gunes M,Sorges U,Bouazizi L ARA the ant colony based routing algorithm for MANETs.Proceedings International Conference on Parallel Processing Workshops.Uuncouver,B C,Canada,2002:79-85
  • 8[5]Lumer E,Fmeta B.Diversity and adaptation in populations of clustering ants Proc of the 3 Conf on Simulation of Adaptive Behavior.MIT Press.1994:499-508
  • 9[6]Parpinelli R S,Lopes H S,Fneitas A A.Data mining wilk an ant colong optimization algnrithm.IEEE Transactions on Evolutionary Computation,2002,6(4):321-332
  • 10[7]Lee Znejung,Lee Chouyuan,Su Shunfeng.An immunity based ant colony optimization algorithm for solving weapon-target assignment problenm.Applied Soft Computing Journal,2002;2(1):39-47

共引文献115

同被引文献78

引证文献7

二级引证文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部