摘要
设p为奇素数(p≠3,7),G是Sylow 2-子群为8阶二面体群D8的8p3阶群,那么G恰有40个彼此不同构的类型.
Let p be an odd prime and G be groups of order 8p^3 with Sylow 2-subgroup D8. In this paper, we have showed that G has 40 nonisomorphic structures and determined all their structures in detail.
出处
《周口师范学院学报》
CAS
2015年第5期1-5,共5页
Journal of Zhoukou Normal University
基金
贵州师范学院重点支持学科
贵阳市科技计划项目(筑科合同[2013101]10-6号)
关键词
有限群
同构分类
群的构造
finite group
isomorphic classification
structure of group