期刊文献+

关于一类捕食-食饵模型恢复率的研究

A Study on a Class of Predator Prey Model Recovery Rate
下载PDF
导出
摘要 研究食饵具有常数投放率及受食饵最大容量影响下捕食者的捕获率,引用参考文献所提到的"恢复率"和"预警长度"这两个概念,通过理论计算,绘制图像及算例,得出:本模型的预警长度较长,生态工作者可以有足够的时间采取措施应对转移,有较好的预警效果. To study the specy has a constant rate and the maximum capacity under the influence of predator predator-prey system capture rate and the relationship between the maximum capacity,predator-prey system USES the recovery rate of reference to define and warning length,through theoretical analysis,and the image is drawn example,concluded that:the model of early warning length is longer,the ecological workers can have enough time to take measures to deal with transfer,this paper has good warning effect.
作者 石月莲
出处 《太原师范学院学报(自然科学版)》 2015年第1期9-12,共4页 Journal of Taiyuan Normal University:Natural Science Edition
关键词 捕食-食饵模型 恢复率 均衡点 predator-prey system recovery rate equilibrium
  • 相关文献

参考文献7

  • 1Scheffer M. Catastrophic shifts in ecosystems[J]. Nature,2001,413:591-596.
  • 2Brok,W. A. ,Carpenter,S. R. Variance as a leading indicator of reging shift in ecosystem services[J]. Ecology and Society, 2006,11(6) :9.
  • 3Scheffer M,Carpenter S R. Catastrophic regime shifts in ecosystems:linking theory to observation[J].Trends in Ecology P E- volution, 2003,18(11) : 648-656.
  • 4Holling,C. S. Resilience and stability of ecological systems[J]. Annual Review of Ecology and Systematics, 1973,4(2) :1-23.
  • 5Van Nes E H,Scheffer M. Slow recovery form perturbations as a generic indicator of a nearby catastrophic shift[J]. American Naturalist, 2007,169 ; 738-747.
  • 6李方方,李伟,贺明峰,戴永贤.一类食饵具有常数投放率系统的恢复率[J].生物数学学报,2011,26(2):303-310. 被引量:2
  • 7Chisholm R A,Filotas E. Critical slowing down as an indicator of transitions in two-species models[-J~. Journal of Theoretical Biology, 2009,257(7) : 142-149.

二级参考文献14

  • 1陈兰荪 梁肇军.食饵种群具有常数收获率的二维Volterra模型的定性分析.生物数学学报,1986,1(1):22-28.
  • 2Van Nes, E.H., Scheffer, M. Slow recovery from perturbations as a generic indicator of a nearby catastrophic shift[J]. American Naturalist, 2007, 169(11):738-747.
  • 3Chisholm, R.A., Filotas, E.,. Critical slowing down as an indicator of transitions in two-species models[J]. Journal of Theoretical Biology, 2009, 257(7):142-149.
  • 4Liu Zhijun, Tan Ronghua. Impulsive harvesting and stocking in a Monod-Haldane functional response predator-prey system[J]. Chaos, Solitons and Fractals, 2007, 34(2):454-64.
  • 5Jiao Jianjun, Chen Lansun et al. A delayed stage-structured predator-prey model with impulsive stocking on prey and continuous harvesting on predator[J]. Applied Mathematics and Computation, 2008, 195(8):316- 325.
  • 6Jiao Jianjun, Meng Xinzhu, Chen Lansun. Harvesting policy for a delayed stage-structured Holling II predator-prey model with impulsive stocking prey[J]. Chaos, Solitons and Fractals, 2009, 41(7):103-112.
  • 7Nakajima, H., DeAngelis, D.L. Resilicence and local stability in a nutrient-limited consumer system[J]. Bulletin of Mathematical Biology, 1989, 51(6):501-510.
  • 8Tanner J T. The stability and the intrinsic growth rates of prey and predator population[J]. Ecology, 1975, 56(3):855-867.
  • 9Rahmstorf S. Ocean circulation and climate during the past 120,000 years[J]. Nature, 2002, 419(5):207-213.
  • 10Scheffer M, Carpenter S R. Catastrophic regime shifts in ecosystems: linking theory to observation[J]. Trends in Ecology & Evolution, 2003, 18(11):648-656.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部