期刊文献+

基于EGARCH-ε_t-GPD模型的VaR计算

The Calculation of VaR Based on EGARCH-εt-GPD Model
下载PDF
导出
摘要 在传统的利用极值理论来计算VaR的过程中,一般先是对时间序列建立GARCH模型,再对残差序列运用极值理论建模,从而估计得到VaR.但建模时在GARCH模型的条件方差方程中,人们只考虑了以前时刻的随机误差项对方差的影响,而忽视了当前时刻的随机误差项对方差所作出的贡献.故作者在对时间序列建立EGARCH模型时,在方差方程中引进了当前时刻的随机误差项,然后再对残差建立GPD模型来研究风险价值,并进行了相应的实证分析,结果表明加入当前时刻的随机误差项后估计得到的VaR准确性更高. In the process of calculating the VaR by the traditional extremum theory,generally in the first the GARCH model is set up on the time sequence,and then,the extremum theory is adopted to model the residual sequence so as to estimate the VaR.But when modeling in the conditional variance equation of the GARCH model,people only consider the influence of the random error term of the past on the variance while ignoring the contribution made by the random error term of the current to the variance.Therefore,when the EGARCH model is set up on the time series by the author,the random error term of the current is brought in the variance equation.And,the GPD model is built on the residual error to study its value at risk and to analyze it empirically.The result shows that the accuracy of the VaR is higher by the way that the VaR is incorporated with the random error term of the current.
出处 《太原师范学院学报(自然科学版)》 2015年第1期54-57,共4页 Journal of Taiyuan Normal University:Natural Science Edition
基金 西华师范大学基本科研业务费专项资金资助(14C004) 南充市社科规划一般规划课题(NC2013B027)
关键词 EGARCH模型 GPD分布 极值理论 VaR EGARCH model GPD distribution extreme value theory VaR
  • 相关文献

参考文献1

二级参考文献11

  • 1叶五一,缪柏其,吴振翔.基于Bootstrap方法的VaR计算[J].系统工程学报,2004,19(5):528-531. 被引量:19
  • 2刘国光,王慧敏.沪深股市收益分布尾部特征研究[J].数理统计与管理,2005,24(3):108-112. 被引量:9
  • 3魏宇.金融市场的收益分布与EVT风险测度[J].数量经济技术经济研究,2006,23(4):101-110. 被引量:28
  • 4惠军,缪柏其,叶五一.基于Zipf律的尾部特征分析及VaR计算[J].运筹与管理,2006,15(4):123-126. 被引量:4
  • 5Philippe J. B,and Potters, M.,Price Comparision: Theory of Financial Risks: From Statistical Physics to Risk Management, Cambridge University Press [M], 2000.
  • 6Bali, T. G. An extreme value approach to estimating volatility and value at risk [J]. J. of Business,2003(76(1)), 83-108.
  • 7Mcneil,A. J. Developing scenarious for future extreme losses using the peaks-over-threshold method [C]. Extremes and integrated risk management,UBS Warburg Press,2000.
  • 8Beirlant, J. , Vynckier, P. and Teugels, J. L.(1996). Tail index estimation, Pareto quantile plots, and regression diagnostics[J]. J. Amer. Statist. Assoc. 91, 1659-1667.
  • 9Mattys, G. and Beirlant, J. Extreme quantile estimation for heavy tailed distribution[R]. Technical report, Department of Mathematics, K. U. Leuven. 2001.
  • 10Mattys, G. and Beirlant, J. Estimating the extreme value index and high quantiles mith exponential regression models[J]. Statistica Sinica, 2003(13), 853-880.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部