期刊文献+

Dielectrophoresis Flow Control of Volatile Fluids in Microchannels 被引量:1

Dielectrophoresis Flow Control of Volatile Fluids in Microchannels
原文传递
导出
摘要 In recent years the microchannel heat exchangers have been applied in a great variety of technical areas. One of the problems, which exist in the microcharmel technology is the flow instabilities, including fluid maldistribution in the microcharmels array for the case of two-phase flow especially in micro-evaporators. One of the ways to solve this problem is flow rate control at the microcharmel inlet. However, due to very small inlet to the array of microchannels the classic flow restriction device (with moving mechanical parts) will be difficult to apply. The new device for the flow rate control based on the dielectrophoresis force was presented in the paper. Experimet^tal research results of using this device for refrigerant flow control was presented in the paper. The experimentally obtained relationships between applied voltages and frequencies and flow rates were presented showing opportunity for applying such method for refrigerants and other volatile fluids.
出处 《Journal of Thermal Science》 SCIE EI CAS CSCD 2015年第5期427-431,共5页 热科学学报(英文版)
基金 supported by Polish Ministry of Science and Higher Education within the Project No.3969/T02/ 2009/36
关键词 dielectrophoresis flow rate control MICROCHANNEL 挥发性液体 微通道 电泳 流控制 制冷剂流量 介电 流量控制 限流装置
  • 相关文献

参考文献15

  • 1Kandlikar S., Garimella S., Li D., Colin S., King M.R., 2006. Heat Transfer and Fluid Flow in minichannels and macrochannels.
  • 2Elsevier Ltd. Pellat H., 1894. Force agissant a la surface de separation de deux dielectiques, C.R. Seances Acad. Sci., (Paris) 119, p. 675.
  • 3Melcher J.R., Hurwitz M., Fax R., 1969. Dielectric liquid expulsion. J. Spacecr. Rockets, 6, 961-967.
  • 4Pohl H.A., 1974. The motion and precipitation of sus- pensoids in divergent electric fields. J. Appl. Phys., 45, 2129-2132.
  • 5Ramos A., Morgan H., Green N.G., Castellanos A., 1998. A.C. Electrokinetics: A review of forces in microelec- trode structures. J. Phys. D: Appl. Phys. L25-30.
  • 6Becker F.F., Wang X.-B., Huang Y., Pethig R., Vykoukal J., Gascoyne P.R.C., 1995. Separation of human breast cancer cells from blood by differential dielectric affinity. Proc. Natl. Acad. Sci. USA 92, 860-864.
  • 7Pethig R., 1996. Dielectrophoresis: using inhomogeneous ac electrical fields to separate and manipulate cells. Crit- ical Rev. Biotechnol. 16, 331-348.
  • 8Markx G.H., Dyda P.A., Pethig R., 1996. Dielectropho- retie separation of bacteria using a conductivity gradient. J. Biotechnol. 51,175-180.
  • 9Muller T., Gerardino A., Schnelle Th., Shirley S.Ct, Bor- doni F., De Gasperis G., Leoni R., Fuhr G., 1996. Trap- ping of micrometer and sub-micrometer particles by high-frequency electrical fields and hydrodynamic forces. J. Phys. D: Appl. Phys., 29, 340-349.
  • 10Muller T., Fiedler S., Schnelle T., Ludwig K., Jung H., Fuhr G., 1996b. High frequency fields for trapping of vi- ruses. Biotechnol. Techn. 10, 221-226.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部