期刊文献+

基于感兴趣窄带区域的同步分割与配准方法及在IGRT中的应用 被引量:4

Synchronous Segmentation and Registration Method Based on Narrow Band of Interest and Its Application to IGRT System
下载PDF
导出
摘要 医学图像分割与配准是图像引导放疗(Image guided radiation therapy,IGRT)系统中的关键技术.为提高基于CBCT(Cone beam CT)的IGRT系统实施胸腹部肿瘤放疗的实时性与自适应性,特别是实现重要危及器官肝脏区域照射剂量的合理控制,本文提出一种基于感兴趣窄带区域的同步分割与配准方法,目标是实现放疗计划系统中计划CT和CBCT图像目标区域的分割与配准.通过构建感兴趣窄带模型,并且与活动轮廓模型相结合实现初始分割,然后与基于光流场(Optical flow field,OFF)的形变配准方法进行循环迭代,从而构造ASOR分割与配准同步模型(Active contour segmentation and optical flow registration synchronously,ASOR).在方法实施时,首先利用非线性扩散模型和窄带活动轮廓模型在CT图像中提取肝脏空间初始位置信息,为同步模型提供合理的肝脏初始轮廓.然后将该轮廓及相应窄带区域经仿射变换映射到CBCT图像,进而结合构造的ASOR同步模型,用光流场确定活动轮廓水平集的运动情况,使分割与配准在同一个演化过程中完成迭代.实验结果和临床应用表明,本文提出的方法应用于基于CBCT的IGRT系统时,可实现肝脏组织的自动分割与放疗剂量分布的快速计算.同时,我们将同步过程中获得的形变域用于实现肝脏与肿瘤靶区等剂量线从计划CT到CBCT的自适应转移,进行自适应放疗效果的临床测评. Medical image segmentation and registration is a key technology in image guided radiation therapy(IGRT)system. In order to improve the real-time performance of cone beam CT(CBCT) based IGRT system for thoracic and abdominal tumors treatment, also for controlling projection dose in liver area efficiently, a synchronous segmentation and registration joint method based on narrow band of interest is proposed to achieve segmentation and registration for the radiotherapy treatment planning system. The key issue in our method is to construct an ASOR synchronization model by integrating narrow band model with active contour model to accomplish initial segmentation, then is combined with an optical flow based deformable registration method to optimize the process iteratively. At first, both nonlinear diffusion model and narrow band active contour are used to get the liver position information of the CT image to provide reasonable initial contour for the synchronization model. Secondly, the liver contour and corresponding narrow band are mapped from the planning CT to CBCT by affine transformation. Thirdly and finally, the ASOR synchronization model is used to fulfill segmentation and registration simultaneously in evolution process by optical flow for determining the active contour level set movements. The experiment results demonstrate that when the proposed method is applied to CBCT based IGRT system, it can automatically segment liver to implement the real time calculation for the following radiation therapy planning, and that the deformation field which is obtained during the segmentation process can transfer the radiation planning from planning CT to CBCT adaptively.
出处 《自动化学报》 EI CSCD 北大核心 2015年第9期1589-1600,共12页 Acta Automatica Sinica
基金 国家自然科学基金(61201441 61471226) 山东省自然科学杰出青年基金(JQ201516)资助~~
关键词 窄带 肝脏分割 光流场 活动轮廓模型 自适应放疗 医学图像 同步分割与配准 Narrow band liver segmentation optical flow active contour model adaptive radiation therapy medical image synchronous segmentati
  • 相关文献

参考文献30

  • 1Gottlieb K L, Hansen C R, Hansen O, Westberg J, Brink C. Investigation of respiration induced intra-and inter-fractional tumour motion using a standard cone beam CT. Acta Oncologica, 2010, 49(7): 1192-1198.
  • 2Saw C B, Yang Y, Li F, Yue N J, Ding C X, Komanduri K, Hug S, Heron D E. Performance characteristics and quality assurance aspects of kilovoltage cone-beam CT on medical linear accelerator. Medical Dosimetry, 2007, 32(2): 80-85.
  • 3龙建武,申铉京,臧慧,陈海鹏.高斯尺度空间下估计背景的自适应阈值分割算法[J].自动化学报,2014,40(8):1773-1782. 被引量:35
  • 4陆剑锋,林海,潘志庚.自适应区域生长算法在医学图像分割中的应用[J].计算机辅助设计与图形学学报,2005,17(10):2168-2173. 被引量:68
  • 5Liu Y C, Xiao K, Liang A L, Guan H B. Fuzzy C-means clustering with bilateral filtering for medical image segmentation. In: Proceedings of the 7th International Conference. Hybrid Artificial Intelligent Systems. Salamanca, Spain: Springer, 2012. 221-230.
  • 6Sun W, Niessen W J, Klein S. Free-form deformation using lower-order B-spline for nonrigid image registration. In: Proceedings of the 17th International Conference Medical Image Computing and Computer Assisted Intervention. Boston, MA: Springer, 2014. 194-201.
  • 7Nithiananthan S, Schafer S, Uneri A, Mirota D J, Stayman J W, Zbijewski W, Brock K K, Daly M J, Chan H, Irish J C, Siewerdsen J H. Demons deformable registration of CT and cone-beam CT using an iterative intensity matching approach. Medical Physics, 2011, 38(4): 1785-1798.
  • 8Paquin D, Levy D, Xing L. Multiscale registration of planning CT and daily cone beam CT images for adaptive radiation therapy. Medical Physics, 2009, 36(1): 4-11.
  • 9Wyatt P P, Noble J A. MAP MRF joint segmentation and registration of medical images. Medical Image Analysis, 2003, 7(4): 539-552.
  • 10Ashburner J, Friston K J. Unified segmentation. NeuroImage, 2005, 26(3): 839-851.

二级参考文献132

  • 1冯林,张名举,贺明峰,戚正君,滕弘飞.用分层互信息和薄板样条实现医学图像弹性自动配准[J].计算机辅助设计与图形学学报,2005,17(7):1492-1496. 被引量:16
  • 2陈允杰,张建伟,朱玉辉.一种新的活动轮廓模型——S-L模型[J].中国图象图形学报,2005,10(8):1012-1017. 被引量:3
  • 3Marr D 姚国正等(译).视觉计算理论[M].科学出版社,1988..
  • 4罗希平.生物信息处理:对自动指纹识别和医学图像分割的研究,博士论文[M].中国科学院自动化研究所人工智能实验室,2000..
  • 5Yilmaz A, Javed O, Shah M. Object tracking: a survey. ACM Computing Surveys, 2006, 38(4): 229-240.
  • 6Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-575.
  • 7Feng Z R, Lu N, Jiang P. Posterior probability mea sure for image matching. Pattern Recognition, 2008, 41(7): 2422-2433.
  • 8Hu W M, Tan T N, Wang L, Maybank S. A survey on visual surveillance of object motion and behaviors. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2004, 34(3): 334-352.
  • 9Zhou H Y, Yuan Y, Shi C M. Object tracking using SIFT features and mean shift. Computer Vision and Image Understanding, 2009, 113(3): 345-352.
  • 10Suga A, Fukuda K, Takiguchi T, Ariki Y. Object recognition and segmentation using SIFT and graph cuts. In: Proceedings of the 19th International Conference on Pattern Recognition. Tampa, USA: IEEE, 2008. 1-4.

共引文献359

同被引文献22

引证文献4

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部