期刊文献+

基于Chwa&Hakimi模型的GA-BPFD算法 被引量:1

GA-BPFD algorithm based on Chwa & Hakimi model
下载PDF
导出
摘要 提出一种Chwa&Hakimi模型下基于遗传算法优化的BPFD算法——GA-BPFD算法。该算法主要分两步:用遗传算法对测试报告进行预处理,得到误差最小的一组BP神经网络权值和偏置值;将所得权值和偏置值作为BP神经网络的初始权值和初始偏置值,用训练完成的神经网络结合测试报告进行系统级故障诊断。详述用于优化BP神经网络的遗传算法的具体步骤,对GA-BPFD算法的时间复杂度进行分析,并进行实验仿真。实验结果表明,相比BPFD算法,GA-BPFD算法具有较高的诊断精度、较低的时间复杂度和良好的泛化能力。 Genetic algorithm to optimize BP neural network diagnostic algorithm (GA-BPFD) was proposed for the system-level diagnosis based on Chwa & Hakimi model. The algorithm consisted of two steps: the genetic algorithm was used to preprocess the test report to obtain a set of minimum error BP neural network weights and bias values; the weights and bias values obtained through previous step were taken as the initial BP neural network weights and bias values, then the faults were diagnosed according to the test report. The GA-BPFD algorithm was described in details, the time complexity was analyzed, and a simula- tion experiment was organized. The experimental results show that compared with BPFD algorithm, GA-BPFD algorithm has higher diagnostic accuracy, lower time complexity and good generalization ability.
出处 《计算机工程与设计》 北大核心 2015年第9期2366-2370,共5页 Computer Engineering and Design
基金 国家自然科学基金重大研究计划基金项目(90718008) 江苏省自然科学基金项目(BK2004119)
关键词 系统级故障诊断 BP神经网络 BPFD算法 GA算法 GA-BPFD算法 泛化能力 system-level fault diagnosis BP neural network BPFD algorithm genetic algorithm GA-BPFD algorithm generalization ability
  • 相关文献

参考文献11

  • 1Wu X, Zhu X, Wu GQ, et al. Data mining with big data [J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26 (1).. 97-107.
  • 2Ui-Min Choi, Kyo-Beum Lee, Blaabjerg F. Diagnosis and tolerant strategy of an open-switch fault for t-type three-level inverter systems [J]. IEEE Transactions on Industry Applica- tions, 2014, 50 (1).. 495-508.
  • 3Mourad Elhadef. Solving the PMC-based system-level fault diagnosis problem using hopfield neural networks [J]. IEEE International Conference on Advanced Information Networking and Applications, 2011: 216-223.
  • 4Mourad Elhadef. A modified hopfield neural network for diag- nosing comparison-based multiprocessor systems using partial syndromes [J]. IEEE 17th International Conference on Paral- lel and Distributed Systems, 2011 : 646-653.
  • 5Mourad Elhadef, Amiya Nayak. Comparison-based system- level fault diagnosis: A neural network approach [J]. IEEE Transactions on Parallel and Distributed Systems, 2012, 23 (6) .. 1047-1059.
  • 6宣恒农,何涛,许宏,孙明明.基于Chwa & Hakimi故障模型的二分诊断算法[J].计算机工程与应用,2010,46(5):66-68. 被引量:3
  • 7Arora S, Singh S. The firefly optimization algorithm: Conver gence analysis and parameter selection [J]. International Jour nal of Computer Applications, 2013, 69 (3).. 48-52.
  • 8Yang XS, He X. Firefly algorithm: recent advances and appli cations [ J ]. International Journal of Swarm Intelligence 2013, 1 (1): 36-50.
  • 9李炯城,王阳洋,李桂愉,王强,肖恒辉,刘海林.快速收敛的混合遗传算法[J].计算机工程与设计,2014,35(2):686-689. 被引量:5
  • 10Wan Weishui, Shingo Mabu, Kaoru Shimada, et al. Enhan- cing the generalization ability of neural networks through con- trolling the hidden layers[J]. Applied Soft Computing, 2009, 9 (1): 404-414.

二级参考文献18

  • 1蒋金山,何春雄,潘少华.最优化计算方法[M].广州:华南理工大学出版社,2007.
  • 2Preparate F P,Metze G,Chien R T.On the connection assignment problem of diagnosable system[J].IEEE Transactions on Electronic Computer,1967,16(12):845-854.
  • 3Krzysztof D,Andrzej P.Globally optimal diagnosis in systems with random faults[J].IEEE Transactions on Computer,1997,46(2):200-204.
  • 4Chwa K Y,Hakimi S L.Scheme for fault-tolerant computing:A comparison omodularly redundant and t-diagnosable system[J].Information Control,1981,49:212-238.
  • 5薛毅.最优化原理与方法[M].北京:北京工业大学出版社,2008.
  • 6Wang Chengjun, Yang Yongjian, Jing Li. A new filled function method for unconstrained global [J]. Journal of Computational and Applied Mathematics, 2009, 225 (1) 68-79.
  • 7郑洲顺,杨晓辉,黄光辉.嵌入共轭梯度算子的遗传算法[J].上饶师范学院学报,2008,28(3):76-79. 被引量:2
  • 8洪玲,莫利柳.一个新的全局收敛的共轭梯度法[J].运筹学学报,2009,13(1):95-106. 被引量:5
  • 9张大方,江招生.基于集团的系统级故障诊断研究[J].计算机学报,1998,21(4):308-314. 被引量:35
  • 10叶海,马昌凤.求解非线性不等式组的混合遗传算法[J].福建师范大学学报(自然科学版),2010,26(1):18-21. 被引量:4

共引文献6

同被引文献4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部