期刊文献+

基于移动互联网技术的出行模式识别方法 被引量:4

Transportation mode recognition method based on mobile internet technology
下载PDF
导出
摘要 针对智能交通中出行模式识别问题,提出一种基于移动互联网技术的出行模式识别方法。通过自主开发的智能终端应用,完成对出行模式位置特征参数、运动参数的实时采集;对采集到的用户出行参数进行分析,选择具有辨识度高的特征;提出一种改进的BP神经网络算法(adaptive learning rate back propagation,ALBP)对出行数据进行训练并识别分类。实验结果表明,该方法能够有效采集出行数据,所提算法提高了出行方式的识别率。 To address the problem of transportation modes recognition in intelligent transportation system, a method based on mobile internet technology was proposed to figure out different transportation modes. Location parameters and motion parame- ters of different transportation modes were collected using developed intelligent terminal applications. Significant mode features were chosen from the collected data. An enhanced back propagation algorithm ALBP (adaptive learning rate back propagation) was proposed to recognize different transportation modes. Experimental results show the proposed method can efficiently collect transportation data and the ALBP algorithm improves the recognition quality.
出处 《计算机工程与设计》 北大核心 2015年第9期2532-2538,共7页 Computer Engineering and Design
基金 河南省科技攻关基金项目(142102210069) 河南省教育厅科研重点攻关基金项目(13A520002)
关键词 移动互联网 智能交通 出行方式 神经网络 模式识别 mobile internet technology intelligent transportation system (ITS) transportation mode neural network pattern recognition
  • 相关文献

参考文献16

  • 1Zhang Z, Poslad S. A new post correction algorithm (PoCoA) for improved transportation mode recognition [C] //IEEE In- ternational Conference on Systems, Man, and Cybernetics. IEEE, 2013: 1512-1518.
  • 2Reddy S, Mun M, Burke J, et al. Using mobile phones to de- termine transportation modes [J]. ACM Transactions on Sen- sor Networks, 2010, 6 (2).. 13-39.
  • 3Xu C, Ji M, Chen W, et al. Identifying travel mode from GPS trajectories through fuzzy pattern recognition [C] // Seventh International Conference on Fuzzy Systems and Know- ledge Discovery. IEEE, 2010.. 889-893.
  • 4Feng T, Timmermans HJP. Transportation mode recognitio- nusing GPS and accelerometer data [J]. Transportation Re- search Part C: Emerging Technologies, 2013, 37.. 118-130.
  • 5Zheng Y, Liu L, Wang L, et al. Learning transportation mode from raw GPS data for geographic applications on the web [C] //Proceedings of the 17th International Conference on World Wide Web. ACM, 2008: 247-256.
  • 6Frendberg M. Determining transportation mode through cell- phone sensor fusion [D]. Boston: Massachusetts Institute of Technology, 2011.
  • 7Stenneth L, Wolfson O, Yu PS, et al. Transportation mode detection using mobile phones and GIS information [C] // Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM, 2011: 54-83.
  • 8Xu D, Song G, Gao P, et al. Transportation modes identifi- cation from mobile phone data using probabilistic models [M] //Advanced Data Mining and Applications. Berlin: Springer Berlin Heidelberg, 2011: 359-371.
  • 9Zheng Y, Chen Y, Li Q, et al. Understanding transportation modes based on GPS data for web applications [J]. ACM Transactions on the Web (TWEB), 2010, 4 (1) : 1-36.
  • 10Hemminki S, Nurmi P, Tarkoma S. Accelerometer-based transportation mode detection on smartphones [C] //Procee- dings of the 11th ACM Conference on Embedded Networked Sensor Systems. ACM, 2013: 13-27.

二级参考文献16

共引文献13

同被引文献37

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部