期刊文献+

线性奇异脉冲系统的分数阶控制

Fractional-Order Controller Design for Linear Singular Impulsive Systems
下载PDF
导出
摘要 根据李雅普诺夫稳定性理论,研究了线性奇异脉冲系统的稳定性问题。通过对该系统添加分数阶控制器,建立了线性奇异脉冲系统的分数阶控制模型,根据系统稳定条件,提出了使得相应系统渐近稳定的充分条件,并给出了分数阶脉冲控制器的设计方法,最后,通过仿真连续系统、整数阶脉冲控制系统和分数阶脉冲控制系统,证明了分数阶脉冲控制的有效性。 By employing the method of Lyapunov function,the problem of stability for linear singular impulsive systems is researched. The model of linear singular impulsive control systems is established when a fractional-order controller is applied. According to stability theory, an asymptotically stability condition is proposed,and the fractional-order impulsive controller design method is derived. Compared with the continuous systems and the integer-order impulsive control systems,the fractional-order impulsive controller is more effective.
出处 《控制工程》 CSCD 北大核心 2015年第5期887-890,共4页 Control Engineering of China
基金 中央高校基本科研业务费专项资金(KYZ201563和KJSY201517)
关键词 李雅普诺夫函数 线性奇异系统 脉冲系统 分数阶控制 Lyapunov functional linear singular systems impulsive systems fractional-order controller
  • 相关文献

参考文献20

  • 1Duan C, Lu H. Delay-Dependent Robust Stabilization for SingularNonlinear System with Markovian Jumping Parameters[C]Proceedings of 2013 Chinese Intelligent Automation Conference.Springer Berlin Heidelberg, 2013: 649-655..
  • 2Feng Z, Lam J, Gao H. a-dissipativity analysis of singular time-delaysystems[J]. Automatica, 2011, 47(11): 2548-2552.
  • 3Du Z, Zhang Q, Liu L. New delay - dependent robust stability ofdiscrete singular systems with time - varying delay [J]. Asian Journalof Control, 2011, 13(1): 136-147.
  • 4Rong L. Robust Stability and Stabilization for Singular Time-DelaySystems with Linear Fractional Uncertainties: A Strict LMIApproach[J]. Mathematical Problems in Engineering,2013, 2013:1-11.
  • 5Zhao X L, Wang A M, Dai C L, et al. Impulsive Controller Design forComplex Nonlinear Singular Networked Systems with PacketDropouts[Jj. Mathematical Problems in Engineering,20J3,2013:1-17.
  • 6Li H S, Luo Y, Chen Y Q. A fractional order proportional andderivative (FOPD) motion controller: tuning rule and experiments[J].Control Systems Technology, IEEE Transactions on, 2010, 18(2):516-520.
  • 7Qi Z, Chen D, Shan L. Fractional Order Modeling of PEMFCTemperature[J]. 3rd International Conference on Electric andElectronics,2013,2(3): 257-260.
  • 8Zhou X J, Gao Q, Abdullah O, et al. Studies of anomalous diffusion inthe human brain using fractional order calculus[J]. Magneticresonance in medicine, 2010, 63(3): 562-569.
  • 9Gutierrez R E, Rosario J M, Tenreiro Machado J. Fractional ordercalculus: basic concepts and engineering applications[J]. MathematicalProblems in Engineering, 2010, 2010:1-19.
  • 10Soorki M N, Tavazoei M S. Fractional-order linear time invariantswarm systems: asymptotic swarm stability and time responseanalysis[J]. Central European Journal of Physics, 2013,11(6):845-854.

二级参考文献7

  • 1廖科,袁晓,蒲亦非,周激流.1/2阶分数演算的模拟OTA电路实现[J].四川大学学报(工程科学版),2005,37(6):150-154. 被引量:8
  • 2蒲亦非,袁晓,廖科,周激流.一种实现任意分数阶神经型脉冲振荡器的格形模拟分抗电路[J].四川大学学报(工程科学版),2006,38(1):128-132. 被引量:17
  • 3W.CHEN,S.HOLM.Fractional Laplaeian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency[J].Acoustical Society of America Journal,2004,115(4):1424-1430.
  • 4孙金海.数学物理方程与特殊函数[M].北京:高等教育出版社,2003:74-80.
  • 5K.NISHIMOTO.An Essence of Nishimoto's Fractional Calculus(Calculus of the 21st Century):Integrations and Differentiations of Arbitrary Order[M].Koriyama:Descartes Press,1991.
  • 6ALBERTO CARPINTERI,PIETRO CORNETTI,et al.Calculation of tensile and flexural strenght of disorderd materials using fractional ealeulus[J].Chaos,Solitons and Fractals,2004,21 (3):623-632.
  • 7W.CHEN,S.HOLM.Fractional Laplacian time-space models for liner and nonlinear lossy media exhibiting arbitrary frequency power-law dependance[J].Acoustical Society of America Journal,2004,115(4):1424-1430.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部