期刊文献+

梯度加权的高阶变分图像去噪模型 被引量:2

High Order Variational Image Denoising Model with Gradient Based Weight
下载PDF
导出
摘要 针对现有高阶变分模型不能很好保持边界的问题,引入卷积后的一阶梯度信息作为二阶导数的加权函数,建立了一个新的高阶变分能量泛函,并得到了四阶偏微分方程扩散模型。在加权系数的构造中,在分析经典二阶全变分扩散模型结构的基础上,给出了具有一定边缘保持能力的加权函数设计方案。此加权函数可判断图像局部区域结构,自适应调整扩散速度,有利于在扩散中保留细节。数值实验表明,该模型可以有效去除噪声,消除阶梯效应,避免边界振荡,具有较好的边界保持性质。 To improve the edge preserving ability of current high order models, this paper proposes a new high order variational energy function by introducing the gradient information after convolution as the weighting function of second derivative, and leads to a fourth-order partial differential equation diffusion model. In the procedure of constructing the weighting coefficients, this paper gives a scheme that makes weighting function have the ability to preserve a certain edge based on the analysis of classical second-order total variation diffusion model. This weighting function can determine local structure region of the image and adapt the diffusion rate, as well as avoid boundary oscillations with good retention properties of the detail. The experimental results show that the proposed model can relief staircase effect, avoid oscillations and preserve edges while removing noise.
出处 《计算机科学与探索》 CSCD 北大核心 2015年第9期1139-1146,共8页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金Nos.51174263 11301113 U1404103 61401150 河南省教育厅科技攻关重点项目No.14A520029 河南理工大学博士基金Nos.B2009-41 60907003 河南理工大学创新型科研团队No.T2014-3 河南理工大学青年骨干教师支持计划No.09-13~~
关键词 图像去噪 高阶变分模型 正则项 边界保持 阶梯效应 image denoising high order variational model regularization term edge preserving staircase effect
  • 相关文献

参考文献16

  • 1Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D: Nonlinear Phenomena, 1992,60(1/4): 259-268.
  • 2You Yuli, Kaveh M. Fourth-order partial differential equations for noise removal[J]. IEEE Transactions on Image Processing, 2009,9(10): 1723-1730.
  • 3Lysaker M, Lundervold A, Tai X C. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time[J]. IEEE Transactions on Image Processing, 2003, 12( 12): 1579-1590.
  • 4Lysaker M, Tai X C. Iterative image restoration combining total variation minimization and a second-order functional[J]. International Journal of Computer Vision, 2006, 66(1): 5-18.
  • 5Li Fang, Shen Chaomin, Fan Jingsong, et al. Image restoration combining a total variational filter and a fourth-order filter[J]. Journal of Visual Communication and lmage Representation, 2007, 18(4): 322-330.
  • 6Kim S, Lim H. Fourth-order partial differential equations for effective image denoising[J]. Electronic Journal of Differ ential Equations, 2009,17: 107-121.
  • 7Lu Bibo, Liu Qiang. An edge-preserving fourth order POE method for image denoising[C]/fProceedings of the 2nd International Conference on Advanced Computer Control, Shenyang, China, Mar 27-29,2010. Piscataway, NJ, USA: IEEE, 2010: 153-157.
  • 8Zhu Wei, Chan T. Image denoising using mean curvature[EB/OL].[2014-11-06]. bttp://www.math.nyu.edu/-wzhul.
  • 9Zhu Wei, Chan T. Image denoising using mean curvature of image surface[J]. SIAM Journal on imaging Sciences, 2012, 5(1): 1-32.
  • 10Brito-Loeza C, Chen Ke. On high-order denoising models and fast algorithms for vector-valued images[J]. IEEE Trans- actions on Image Processing, 2010,19(6): 1518-1527.

二级参考文献11

  • 1RUDIN L, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithins[J]. Phy D, 1992, 60(1/4): 259-268.
  • 2BRITO-LOEZA C, CHEN K. Multigrid algorithm for high order denoising[J]. SIAM J Imaging Sciences, 2010, 4(3): 363-389.
  • 3TAI X C, HAHN J, CHUNG G J. A fast algo- rithm for Euler's elastic method using augmented Lagrangian method[J]. SIAM J Imaging Sci, 2010, 4(5): 313-344.
  • 4You Y L, KAVEH M. Fourth-order partial differen- tial equation for noise removal[J]. IEEE Trans Image Process, 2000, 9(10): 1 723-1730.
  • 5ZHU Wei, TONγ Chan. Image denoising using mean curvature[J]. SIAM J Imaging Sci, 2012, 5(1): 1-32.
  • 6BLOMGREN P, CHAN T F. Color TV: total vari- ation methods for restoration of vector,valued im- ages[J1. IEEE Trans Image Process, 1998, 7(3): 304-309.
  • 7BRESSON X, CHANT F. Fast dual minimization of the vectorial total variation norm and applicationsto coior image processing[J]. Inverse Problems and Imaging, 2008, 2(4): 455-484.
  • 8BAR L,BROOK A, SOCHEN N, et al. Deblurring of color images corruped by impulsive noise[J]. IEEE TIP,2007, 16(4): 1101-1111.
  • 9SAPIRO G, RINGACH D L. Anisotropic diffusion of multivalued images with applications to color fil- tering[J]. IEEE Trans Image Process, 1996, 5(11): 1 582-1 586.
  • 10YUILLE A L, RANGARAJAN A. The concave-Yonvex procedure[J]. Neural Computation, 2003, 15(4): 915-936.

共引文献3

同被引文献12

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部