期刊文献+

辛体系下THz波在碳纳米管阵列中的传播 被引量:1

THz Wave Propagation in Carbon Nanotube Arrays Under the Symplectic System
下载PDF
导出
摘要 对于一个被周期性平行有限长碳纳米管阵列填充的平面波导,基于平行碳纳米管阵列的等效介质模型,忽略其空间色散,考虑了电磁波的损耗,从而得到填充介质的介电特性.并将电磁波在波导中的传播导入到Hamilton体系,同时考虑两侧边界条件均为理想导电边界条件,从而在辛理论框架下求解本征值方程,得到了电磁波传播色散关系.分析可知,存在一个窄的频段,电磁波基模无法传播,然而在频段外,电磁波基模传播具有极其低的损耗,这使得碳纳米管阵列具有宽频带传播的特性,这些特性使得碳纳米管阵列相比于传统材料具有更优的传播特性. For a planar waveguide filled with periodic parallel finite-length carbon nanotube ar- ray, the authors got the dielectric properties of the parallel carbon nanotube array based on the equivalent medium model for parallel carbon nanotube arrays while ignoring the spatial disper- sion but considering the electromagnetic wave propagation loss, respectively, and led the elec- tromagnetic wave propagation in the waveguide into the Hamilton system with the ideal conduc- tive boundary conditions, then the authors used the symplectic theory framework to solve the eigenvalue equations for the electromagnetic wave propagation and obtain the dispersion rela- tionships. According to the analysis, it shows that the fundamental mode for the electromagnet- ic waveguide can' t propagate within a narrow spectrum, however, the fundamental mode propagates smoothly with very low loss elsewhere, which makes the carbon nanotube array a waveguide material with better propagation characteristics in a wide spectrum than traditional materials.
出处 《应用数学和力学》 CSCD 北大核心 2015年第9期905-913,共9页 Applied Mathematics and Mechanics
基金 国家自然科学基金(11372252) 中央高校基本科研业务费(310201401JCQ01001)~~
关键词 碳纳米管阵列 太赫兹 辛体系 波导 carbon nanotube array terahertz symplectic system waveguide
  • 相关文献

参考文献25

  • 1de Volder M F L, Tawfick S H, Baughman R H, Hart A J. Carbon nanotubes: present and future commercial applications[J]. Science,2013,339(6119): 535-539.
  • 2Hanson G W. Fundamental transmitting properties of carbon nanotube antennas[J]. Antennas and Propagation, IEEE Transactions on,2005,53(11): 3426-3435.
  • 3Fu K, Zannoni R, Chan C, Adams S H, Nicholson J, Polizzi E, Yngvesson K S. Terahertz detection in single wall carbon nanotubes[J]. Applied Physics Letters,2008,92(3): 033105.
  • 4Kawano Y, Uchida T, Ishibashi K. Terahertz sensing with a carbon nanotube/two-dimensional electron gas hybrid transistor[J]. Applied Physics Letters,2009,95(8): 083123.
  • 5Wang Y, Kempa K, Kimball B, Carlson J B, Benham G, Li W Z, Kempa T, Rybczynski J, Herczynski A, Ren Z F. Receiving and transmitting light-like radio waves: antenna effect in arrays of aligned carbon nanotubes[J]. Applied Physics Letters,2004,85(13): 2607-2609.
  • 6Maksimenko S A, Slepyan G Y, Nemilentsau A M, Shuba M V. Carbon nanotube antenna: far-field, near-field and thermal-noise properties[J]. Physica E: Low-dimensional Systems and Nanostructures,2008,40(7): 2360-2364.
  • 7REN Lei, Pint C L, Booshehri L G, Rice W D, WANG Xiang-feng, Hilton D J, Takeya K, Kawayama I, Tonouchi M, Hauge R H, Kono J. Carbon nanotube terahertz polarizer[J]. Nano Letters,2009,9(7): 2610-2613.
  • 8Batrakov K G, Maksimenko S A, Kuzhir P P, Thomsen C. Carbon nanotube as a Cherenkov-type light emitter and free electron laser[J]. Physical Review B,2009,79(12): 125408.
  • 9Slepyan G Y, Maksimenko S A, Lakhtakia A, Yevtushenko O, Gusakov A V. Electrodynamics of carbon nanotubes: dynamic conductivity, impedance boundary conditions, and surface wave propagation[J]. Physical Review B,1999,60(24): 17136.
  • 10Maffucci A, Miano G, Villone F. A transmission line model for metallic carbon nanotube interconnects[J]. International Journal of Circuit Theory and Applications,2008,36(1): 31-51.

二级参考文献18

  • 1[1]Ramo S, Whinnery JR, Van Duzer Th. Fields and Waves in Communication Electronics. 2nd ed. New York: J Wiley & Sons, 1984
  • 2[4]Yariv A. Quantum Electronics. 2nd ed. New York: J Wiley & Sons, 1975
  • 3[8]Zhong WX, Lin JH, Zhu JP. Computation of gyroscopic systems and symplectic eigensolutions of skew-symmetric matrices. Computers & Structures, 1994, 52(5): 999~1009
  • 4[12]Leung AYT. Dynamic Stiffness & Sub-structures. London:Springer, 1993
  • 5[13]Zhong WX, Williams FW, Bennett PN. Extension of the Wittrick-Williams algorithm to mixed variable systems. J Vib & Acous Trans ASME, 1997, 119:334~340
  • 6曹庄琪,导波光学中的转移矩阵方法,2000年
  • 7傅君眉,高等电磁理论,2000年
  • 8Zhong Wanxie,J Vib Acoust Trans ASME,1997年,119卷,334页
  • 9Zhong Wanxie,Proc EPMESC 5:Vol 1,1995年,1209页
  • 10钟万勰,弹性力学求解新体系,1995年

共引文献32

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部