期刊文献+

微通道中电渗流及微混合的离子浓度效应 被引量:6

Effects of Ion Concentration on Electroosmotic Flow and Micromixing in Microchannels
下载PDF
导出
摘要 电渗流广泛应用于微流控芯片中的流体输运与混合.该文提出了一种离子浓度梯度对电渗流及微混合产生影响的变量模型,采用有限元分析方法对微通道中电渗流及微混合的离子浓度效应进行了数值模拟,分别讨论了zeta电势、介电常数等对微通道内流场和浓度场的影响规律,定量分析了微混合效率.结果表明,当zeta电势和介电常数随浓度变化时,微通道中流场分布不均匀,离子分布不对称.当溶液浓度趋近1 mol/L时,溶液基本无法进入微通道.微混合效率随溶液间浓度差的增大而减小,而且浓度差越大越能在较短距离内到达充分混合. Electroosmotic flow is widely used to transport and mix fluids in microfiuidic chips. A variable model for the ion concentration gradient effects on the electroosmotic flow and mi- cromixing in microchanneis was presented. The effects were investigated numerically with the finite element method. The impacts of the zeta potential and the dielectric constant on the flow field and concentration field were also analyzed. The micromixing efficiency in the microchannel was evaluated quantitatively. The results show that the flow field is inhomogeneous, and the distribution of the ion concentration will be asymmetric in the microchannel while the zeta po- tential and the dielectric constant vary with the ion concentration. When the concentration of the electrolyte solution is approximate to 1 mol/L, the solution essentially couldn' t be driven into the microchannel. The micromixing efficiency decreases with the ion concentration differ- ence between the electrolyte solutions, and the larger the difference is, the shorter the distance is needed to reach perfect mixing.
作者 杨大勇 王阳
出处 《应用数学和力学》 CSCD 北大核心 2015年第9期981-989,共9页 Applied Mathematics and Mechanics
基金 国家自然科学基金(11302095)~~
关键词 电渗流 离子浓度 介电常数 zeta电势 electroosmotic flow ion concentration dielectric constant zeta potential
  • 相关文献

参考文献19

  • 1Tian F, Li B, Kwok D Y. Tradeoff between mixing and transport for electroosmotic flow in heterogeneous microchannels with nonuniform surface potentials[J]. Langmuir,2005,21(3): 1126-1131.
  • 2Dutta P, Beskok A. Analytical solution of combined electroosmotic/pressure driven flows in two-dimensional straight channels: finite Debye layer effects[J]. Analytical Chemistry,2001,73(9): 1979-1986.
  • 3Hessel V, Lwe H, Schnfeld F. Micromixers—a review on passive and active mixing principles[J]. Chemical Engineering Science,2005,60(8/9): 2479-2501.
  • 4Capretto L, CHENG Wei, Hill M, ZHANG Xun-li. Micromixing within microfluidic devices[C]//LIN Bing-cheng, ed. Microfluidics: Topics in Current Chemistry,304. Berlin, Heidelberg: Springer-Verlag, 2011: 27-68.
  • 5Jeon W, Shin C B. Design and simulation of passive mixing in microfluidic systems with geometric variations[J]. Chemical Engineering Journal,2009,152(2/3): 575-582.
  • 6ZHANG Fang, Daghighi Y, LI Dong-qing. Control of flow rate and concentration in microchannel branches by induced-charge electrokinetic flow[J]. Journal of Colloid and Interface Science,2011,364(2): 588-593.
  • 7Nayak A K. Analysis of mixing for electroosmotic flow in micro/nano channels with heterogeneous surface potential[J]. International Journal of Heat and Mass Transfer,2014,75: 135-144.
  • 8WANG Jin-ku, WANG Mo-ran, LI Zhi-xin. Lattice Boltzmann simulations of mixing enhancement by the electro-osmotic flow in microchannels[J]. Modern Physics Letters B,2005,19(28/29): 1515-1518.
  • 9WANG Jin-ku, WANG Mo-ran, LI Zhi-xin. Lattice Poisson-Boltzmann simulations of electro-osmotic flows in microchannels[J]. Journal of Colloid and Interface Science,2006,296(2): 729-736.
  • 10Alizadeh A, Wang J K, Pooyan S, Mirbozorgi S A, Wangd M. Numerical study of active control of mixing in electro-osmotic flows by temperature difference using lattice Boltzmann methods[J]. Journal of Colloid and Interface Science,2013,407: 546-555.

同被引文献36

  • 1李战华,吴健康,胡国庆,等.微流控芯片中的流体流动[M].北京:科学出版社,2012.
  • 2Wong S H, Ward M C L, Wharton C W. Micro T-mixer as a rapid mixing micromixer[J]. Sensors and Actuators B: Chemical,2004,100(3): 359-379.
  • 3Nguyen N T, Wu Z. Micromixers—a review[J]. Journal of Micromechanics and Microengineering,2005,15(2): R1-R16.
  • 4Wong S H, Bryant P, Ward M, Wharton C. Investigation of mixing in a cross-shaped micromixer with static mixing elements for reaction kinetics studies[J]. Sensors and Actuators B: Chemical,2003,95(1/3): 414-424.
  • 5Mouza A A, Patsa C M, Schnfeld F. Mixing performance of a chaotic micro-mixer[J]. Chemical Engineering Research and Design,2008,86(10): 1128-1134.
  • 6Mouheb N A, Malsch D, Montillet A, Solliec C, Henkel T. Numerical and experimental investigations of mixing in T-shaped and cross-shaped micromixers[J]. Chemical Engineering Science,2012,68(1): 278-289.
  • 7Parsa M K, Hormozi F, Jafari D. Mixing enhancement in a passive micromixer with convergent-divergent sinusoidal microchannels and different ratio of amplitude to wave length[J].Computers & Fluids,2014,105: 82-90.
  • 8Cho C C, Ho C J, Chen C K. Enhanced micromixing of electroosmotic flows using aperiodic time-varying zeta potentials[J]. Chemical Engineering Journal,2010,163(3): 180-187.
  • 9Jeong S, Park J, Kim J M, Park S. Microfluidic mixing using periodically induced secondary potential in electroosmotic flow[J]. Journal of Electrostatics,2011,69(5): 429-434.
  • 10Lin T Y, Chen C L. Analysis of electroosmotic flow with periodic electric and pressure fields via the lattice Poisson-Boltzmann method[J]. Applied Mathematical Modelling,2013,37(5): 2816-2829.

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部