期刊文献+

基于LDA主题特征的微博转发预测 被引量:21

Predicting Retweeting Behavior Based on LDA Topic Features
下载PDF
导出
摘要 微博转发是微博传播的重要途径,也是研究微博信息传播、舆情监控的最关键问题之一。研究用户转发行为对信息传播分析、舆情监控和热点提取有很大帮助。然而,当前对微博转发行为的研究大多是在宏观层面,为了解决微观层面预测用户转发行为问题,在分析影响用户转发的各类因素基础上,首先构建了微博特征和用户特征,然后通过将LDA抽取的微博隐含主题特征,与微博特征和用户特征相结合建立起基于主题特征的微博预测模型。实验结果验证了该模型在微博转发行为预测的有效性。 Retweeting is both the key way for information propagation in microblog and one of the most important issues in information dissemination and public opinion monitoring research. It is significant and helpful to study user retweeting behavior for analyzing informa- tion diffusion, monitoring public opinion and hot extraction. However, most of the researches are focused on the macroscopic stratum of the microblog social network which are difficult to apply on areas such as recommending ads or message and predicting the diffusion path. To predict whether a tweet will be retweeted by a user at the microcosmic level, this paper first builds the microblog features and the user fea- tures based on the analysis of the factors that affect retweeting behavior, and then establishes a predicting retweeting behavior model by combining the latent topic features extracted via using the semantic model of latent Dirichlct allocation with the microblog features and the user features. The experiment results have verified the feasibility of this model based on topic features.
作者 李志清
出处 《情报杂志》 CSSCI 北大核心 2015年第9期158-162,共5页 Journal of Intelligence
基金 广州市社会科学规划项目"基于物联网技术的广州智慧社区应用研究"(编号:2012QN06)
关键词 微博转发 主题特征 LATENT DIRICHLET ALLOCATION microblog retweeting topic feature latent dirichlet allocation
  • 相关文献

参考文献12

  • 1中国互联网信息中心.第35次中国互联网络发展状况统计报告[R].2015-1.
  • 2张玢玢,李兵,李岳欣.基于特征选择的企业微博转发机制研究[J].情报杂志,2014,33(12):127-132. 被引量:4
  • 3Yang Z, Guo J,Cai K, et al. Understanding Retweefing Behaviors in Social Networks[ C]. Proceedings of the 19th ACM Interna- tional Conference on Information and Knowledge Management. ACM ,2010 : 1633-1636.
  • 4Petrovic S, Osborne M, Lavrenko V. RT to Win ! Predicting Mes- sage Propagation in Twitter[C ]. ICWSM. 2011.
  • 5Xu Z, Yang Q. Analyzing User Retweet Behavior on Twitter [C].Proceedings of the 2012 International Conference on Ad- vances in Social Networks Analysis and Mining (ASONAM 2012 ). IEEE Computer Society ,2012:46-50.
  • 6Peng H K, Zhu J, Piao D, et al. Retweet Modeling Using Condi- tional Random Fields[ C ]. Data Mining Workshops ( ICDMW), 2011 IEEE 11 th International Conference on. IEEE, 2011:336- 343.
  • 7张旸,路荣,杨青.微博客中转发行为的预测研究[J].中文信息学报,2012,26(4):109-114. 被引量:70
  • 8吴凯,季新生,刘彩霞.基于行为预测的微博网络信息传播建模[J].计算机应用研究,2013,30(6):1809-1812. 被引量:32
  • 9ZamanT R,Herbrich R, Van Gael J,et al. Predicting Information Spreading in Twitter [ C ]. Workshop on Computational Social Science and the Wisdom of Crowds, NIPS. 2010, 104 (45) : 17599-601.
  • 10Kwak H,Lee C,Park H,et al. What is Twitter,a Social Network or a News Media.'? [C ]. Proceedings of the 19th International Conference on World Wide Web. ACM,2010:591-600.

二级参考文献38

  • 1R. Lahan. The Economics of Attention[M]. Univer- sity of Chicago Press, 2006.
  • 2Pete Cashmore. YouTube: Why Do We Watch? [DB/ OL]. http://editin, cnn. com/2009/TECH/12/17/ cashmore, youtube/ index, html, 2010.
  • 3J. Berger, K. L. Milkman. Social Transmission, E- motion, and the Virality of Online Content[R]. Whar- ton Research Paper, 2010.
  • 4A. Tumaslan, T. O. Sprenger, P. G. Sanduer, et al. Predicting Elections with Twitter: What 140 Charac- ters Reveal about Political Sentiment[C]//Proceedings of the 4th International AAAI Conference on Weblogs and Social Media. ICWSM,10, 2010.
  • 5J. Bollen, H. Mao, A. Pepe. Determining the public mood state by analysis of mieroblogging posts[C]// Proceedings of the Alife XII Conference MIT Press, 2010.
  • 6T. Sakaki, M. Okazaki, Y. Matsuo. Earthquake Shakes Twitter Users: Real-time Event Detection by Social Sensors[C]//Proceedings of WWW,10, 2010.
  • 7Y. Qu, C. Huang, P. Zhang, et al. Microblogging after a Major Disaster in China: A Case Study of the Yushu Earthquake [C]//Proeeedings of CSCW2011, 2011.
  • 8H. Kwak, C. Lee,H. Park, et al. What is Twitter, a ,Social Network or a News Media[C]//Proceedings of WWW'IO, 2010.
  • 9D. Boyd, S. Golder, G. Lotan. Tweet, tweet, retweet: Conversational aspects of retweeting on Twit- ter [ C]//Proceedings of 43rd Hawaii International Conference on System Sciences, 2010.
  • 10B. Suh, L. Hong, P. Pirolli, et al. Want to be Retweeted? Large Scale Analytics on Factors Impac- ting Retweet in Twitter Network[C]//Proceedings of IEEE 2nd International Conference on Social Compu- ting (SocialCom), IEEE. 2010:177-184.

共引文献100

同被引文献201

  • 1姜晓伟,王建民,丁贵广.基于主题模型的微博重要话题发现与排序方法[J].计算机研究与发展,2013,50(S1):179-185. 被引量:12
  • 2苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:386
  • 3Dash M, Liu H. Feature Selection for Classification[J]. Intelligent Data Analysis, 1997, 1(1): 131-156.
  • 4Yang Y, Pedersen J O. A Comparative Study on Feature Selection in Text Categorization[C]. ICML. 1997, 97: 412-420.
  • 5Wang Z, Qian X. Text Categorization Based on LDA and SVM[C]. Computer Science and Software Engineering, 2008 International Conference on. IEEE, 2008, h 674-677.
  • 6Rogati M, Yang Y. High-Performing Feature Selection for Text Classification[C]. Proceedings of the Eleventh International Conference on Information and Knowledge Management. ACM, 2002: 659-661.
  • 7Basu T, Murthy C A. Effective Text Classification by a Supervised Feature Selection Approach[C]. Data Mining Workshops (ICDMW), 2012 IEEE 12th International Conference on. IEEE, 2012: 918-925.
  • 8Blei D M, Ng A Y, Jordan M I. Latent Dirichlet Allocation[J]. the Journal of Machine Learning Research, 2003, 3: 993-1022.
  • 9Sebastiani F. Machine learning in Automated Text Categorization[J]. ACM Computing Surveys (CSUR), 2002, 34(1): 1-47.
  • 10Chang C C, Lin C J. LIBSVM: A Library for Support Vector Machines[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2011, 2(3): 27.

引证文献21

二级引证文献161

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部