期刊文献+

基于启发式预测窗口的UAV实时航迹规划方法 被引量:2

Real-time method of UAV path planning based on heuristic predictive window
下载PDF
导出
摘要 考虑移动目标及移动威胁,根据机载传感器实时获得的目标及威胁信息,提出一种基于启发式预测窗口的无人机实时航迹规划方法。根据敌我态势估算预测窗口,并结合卡尔曼滤波预测目标及威胁的状态,构建基于矢量夹角原理的目标函数,评估威胁及航程代价并满足无人机的机动约束。该方法通过最速下降法在线优化得到一系列的无人机航向角,完成航迹规划。仿真结果表明该方法可以有效追击移动目标,并规避移动威胁,实现无人机实时航迹规划。 In view of moving target and moving threat,in accordance to the real-time information of target and threat acquired by airborne detector,a real-time method of unmanned aerial vehicle (UAV)path planning based on heuristic predictive window is proposed.Estimating predictive window based on friend or enemy situa-tion,the state of target and threat can be predicted by Kalman filtering.Objective function is established by using vector angle principle,which can evaluate threats and voyage costs and satisfy the UAV maneuvering con-straints.By negative gradient descent online optimization,a series of UAV heading angle can be gotten,and the path planning is accomplished.The simulation results show that the method can pursuit moving target and avoid moving threat efficiently,which can realize real-time path planning for UAV.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2015年第10期2279-2285,共7页 Systems Engineering and Electronics
基金 航空科学基金(2011ZC53026)资助课题
关键词 无人机 实时航迹规划 启发式预测窗口 卡尔曼滤波 unmanned AERIAL VEHICLE (UAV) real-time path planning heuristic predictive window Kal-man filtering
  • 相关文献

参考文献17

  • 1Bohlin R, Kavraki L E. Path planning using lazy PRM[C]// Proc. of the IEEE International Conference on Robotics and Automation, 2000:521 - 528.
  • 2Kavraki L E, Svestka P, Latombe J C, et al. Probabilistic road- maps for path planning in high-dimensional configuration spaces[J].IEEE Trans. on Robotics and Automation, 1996,12 (4) : 566 - 580.
  • 3Yang Y, Brock O. Adapting the sampling distribution in PRM plan- ners based on an approximated medial axis[C]//Proc, of the IEEE International Conference on Robotics and Automation, 2004 : 4405 - 4410.
  • 4Pehlivanoglu Y V. A new vibrational genetic algorithm enhanced with a Voronoi diagram for path planning of autonomous UAV [J]. Aerospace Science and Technology , 2012,16 ( 1 ) : 47 - 55.
  • 5Chen X, Chen X M. The UAV dynamic path planning algorithm research based on Voronoi diagram[C]//Proc, of the 26th Chi- nese Control and Decision Conference, 2014:1069 - 1071.
  • 6Meng H, Xin G Z. UAV route planning based on the genetic simula- ted annealing algorithm[C]//Proc, of the IEEE International Con- f erence on Mechatronic s and Automation, 2010 : 788 - 793.
  • 7Chakrabarty A, Langelaan J W. Flight path planning for UAV at- mospheric energy harvesting using heuristic seareh[C]//Proc, of the AIAA Guidance, Navigation and Control Conference, 2010 - 8033.
  • 8符小卫,高晓光.基于贝叶斯优化的三维飞行航迹规划[J].兵工学报,2007,28(11):1340-1345. 被引量:8
  • 9Roberge V, Tarbouchi M, Labonte G. Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning[J]. IEEE Trans. on Industrial Informa- tics ,2013,9(1) :132 - 141.
  • 10Kabama P T, Meerkov S M, Zeitz F H. Optimal path planning for unmanned combat aerial vehicles to defeat radar tracking[J]. Jour- nal of Guidance, Control, and Dynamics, 2006(3/4) :279 - 288.

二级参考文献34

  • 1周锐,成晓静,余舟毅,池沛,陈宗基.智能化战术飞行轨迹规划方法研究[J].控制与决策,2005,20(2):222-225. 被引量:12
  • 2王和平,柳长安,李为吉.基于蚁群算法的无人机任务规划[J].西北工业大学学报,2005,23(1):98-101. 被引量:11
  • 3余翔,王新民,李俨.无人直升机路径规划算法研究[J].计算机应用,2006,26(2):494-495. 被引量:6
  • 4龙涛,孙汉昌,朱华勇,沈林成.战场环境中多无人机任务分配的快速航路预估算法[J].国防科技大学学报,2006,28(5):109-113. 被引量:9
  • 5Campbell M, Sukkarieh S, Goktogan A. Operator decision modeling in cooperative UAV systems[C]//AIAA Guidance, Navigation, and Control Conference and Eyhibit, 2006.
  • 6李季.基于Multi-Agent的多无人机协同作战决策与规划研究[D].西安:空军工程大学,2009:120-127.
  • 7Dogan A, Zengin U. Unmanned aerial vehicle dynamic target pursuit by using a probabilistic threat exposure map[J]. AIAA Journal of Guidance, Control and Dgnamics, 2006, 29 (4)944 -954.
  • 8Gu Dawei, Kamal W, Postlethwaite I. A UAV waypoint generator [C]//AIAA 1st Intelligent Systems Technical Conference, 2004.
  • 9Chi Pei, Chen Zongji, Zhou Rui. Autonomous decision-making of UAV based on extended situation assessment[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit 2006.
  • 10Shi Enxiu, Cai Tao, He Changlin. Study of the new method for improving artifical potential field in mobile robot obstacle avoidanee[C]//IEEE International Conference on Automation and Logistics, 2007,8:282 - 286.

共引文献46

同被引文献12

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部