期刊文献+

基于综合健康指数与RVM的系统级失效预测 被引量:6

System-level failure prognostics using synthesized health index and relevance vector machine
下载PDF
导出
摘要 针对具有多维状态变量、多种工作模式和故障模式的复杂工程系统,提出一种基于综合健康指数(synthesized health index,SHI)与相关向量机(relevance vector machine,RVM)的系统级失效预测方法。在离线训练阶段,先根据有限失效历史数据建立各工作模式下的健康评估模型,并据此获得各历史退化轨迹的SHI序列;然后再使用RVM对这些序列进行回归处理,进而辨识出与回归曲线最为匹配的函数模型。在线预测阶段,先运用健康评估模型计算当前设备的SHI序列并进行RVM回归,再拟合出离线阶段确定的函数模型并添加时变噪声;最后,外推预测出系统剩余使用寿命的概率密度分布。该方法成功应用到涡轮发动机的失效预测案例。 For complicated engineering systems with multiple health indicators,multiple operation and fault modes,a system-level failure prediction method is presented based on the synthesized health index (SHI)and the rele-vance vector machine (RVM).In the offline training phase,the health assessment models for each operation mode are firstly developed using historical data,which then will be utilized to calculate the corresponding SHI sequences for each degradation path.Moreover,the model that has the best fit to the historical SHI sequences is selected with the help of RVM regression.In the online prediction phase,the parameters of the selected model are estimated and updated using the online SHI sequences and the RVM,then time-varying noises are also added to the selected model to represent the uncertainty.Further,the probability density distribution of system remaining useful life is obtained by the model ex-trapolating in time.The method is successfully applied to the failure prediction of turbine engines.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2015年第10期2298-2305,共8页 Systems Engineering and Electronics
基金 航空科学基金(20100751010) 北京市自然科学基金(4113073)资助课题
  • 相关文献

参考文献19

  • 1孙博,康锐,谢劲松.故障预测与健康管理系统研究和应用现状综述[J].系统工程与电子技术,2007,29(10):1762-1767. 被引量:168
  • 2Jardine A K S, Lin D, Banjevic D. A review on machinery diag-nostics and prognostics implementing condition based mainte nance[J]. Mechanical Systems and Signal Processing, 2006, 20 (7) : 1483- 1510.
  • 3Pecht M G. A prognostics and health management roadmap for information and electronics-rich system[J]. Microelectronics Re- liability ,2010,50(3) :317 - 323.
  • 4Orchard M E, Vachtsevanos G J. A particle-filtering approach for on-line fault diagnosis and failure prognosis[J]. Transactions of the Institute of Measurement and Control, 2009,31 (3/4) : 221 - 246.
  • 5Moura M C, Zio E, Lins I D. Failure and reliability prediction by support vector machines regression of time series data[J]. Reliability Engineering and System Safety, 2011,96 (11) : 1527 - 1534.
  • 6Gebraeel N, Lawley M, Liu R, et al. Residual life predictions from vibration-based degradation signals: a neural network ap- proach[J]. IEEE Trans. on Industrial Electronics, 2004,51 (3) : 694 - 700.
  • 7Si X S,Wang W B,Hu C H,et al. Remaining useful life estimation: a review on the statistical data driven approaches[J]. European Journal of Operational Research ,2011,213(1) : 1 - 14.
  • 8Xue F, Bonissone P, Varma A, et al. An instance-based method for remaining useful life estimation for aircraft engines[J]. Jour- nal of Failure Analysis and Prevention ,2008,8(2) : 199 - 206.
  • 9Wang T, Yu J, Siegel D, et al. A similarity based prognostics approach for remaining useful llfe estimation of engineered sys- tems[C]//Proc, of the International Conference on Prognostics and Health Management, 2008 : 1 - 6.
  • 10Sankararaman S, Goebel K. Remaining useful life estimation in prognosis: an uncertainty propagation problem[C]//Proc, of the AIAA Aerospace Conference, 2013 : 1 - 8.

二级参考文献29

  • 1曾声奎,Michael G.Pecht,吴际.故障预测与健康管理(PHM)技术的现状与发展[J].航空学报,2005,26(5):626-632. 被引量:279
  • 2张叔农,谢劲松,康锐.电子产品健康监控和故障预测技术框架[J].测控技术,2007,26(2):12-16. 被引量:26
  • 3孙博,赵宇,黄伟,谢劲松,康锐,吕瑞.电子产品健康监测和故障预测方法的案例研究[J].系统工程与电子技术,2007,29(6):1012-1016. 被引量:17
  • 4Luo J H,Namburu M,Pattipati K,et al.Model-based prognostic techniques[C] // Proc.of IEEE Systems Readiness Technology Conference,2003:330-340.
  • 5Wang P,Vachtsevanos G.Fault prognostics using dynamic wavelet neural networks[C] // Proc.of IEEE Systems Readiness Technology Conference,2001:857-870.
  • 6Wang W Q,Golnaraghi M F,Ismail F.Prognosis of machine health condition using neuro-fuzzy systems[J].Mechanical Systems and Signal Processing,2004,18(4):813-831.
  • 7Takens F.Detecting strange attractors in fluent turbulence[J].Lecture Notes in Mathematics,1981,898:366-381.
  • 8Tipping M E.Sparse Bayesian learning and the relevance vector machine[J].Journal of Machine Learning Research,2001,1(3):211-244.
  • 9Candela J Q,Girard A,Larsen J,et al.Propagation of uncertainty in Bayesian kernel models-application to multiple-step ahead forecasting[C] // Proc.of IEEE International Conference on Acoustics,Speech,and Signal Processing,Lyngby,2003:701-704.
  • 10Chen M Z,Zhou D H.Particle filtering based fault prediction of nonlinear systems[C] // Proc.of IFAC Symposium on Safe Processing,2003:2971-2977.

共引文献205

同被引文献29

引证文献6

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部