期刊文献+

一种语义增强的空间关键词搜索方法 被引量:3

Semantic-Enhanced Spatial Keyword Search
下载PDF
导出
摘要 空间关键词搜索立足于查找满足用户查询意图且空间距离相近的兴趣点(point of interest,POI),在地图搜索等领域有着广泛的应用.传统的空间关键词搜索方法仅考虑关键词与POI点在文本上的匹配程度,忽略了查询的语义信息,因而会导致相关结果丢失以及无关结果引入等问题.针对传统方法的局限,提出了语义增强的空间关键词搜索方法 S3(semantic-enhanced spatial keyword search).该方法对查询关键词中包含的语义信息进行分析,并结合语义相关性和空间距离对POI点进行有效的排序.S3方法主要有以下2个技术挑战:1)如何对语义信息进行分析.为此,S3引入了知识库对POI数据进行语义扩充,并提出了一种基于图的语义距离度量方式.结合语义距离和空间距离,S3给出POI点的综合排序方案.2)如何在大规模数据上即时地返回top-k搜索结果.针对这一挑战,提出了一种新型的语义-空间混合索引结构GRTree(graph rectangle tree),并研究了有效的剪枝策略.在大规模真实数据集上的实验表明,S3不仅能够返回更为相关的结果,而且有着很好的效率和可扩展性. Spatial keyword search finds the points-of-interest(POIs)which are not only relevant to users'query intent,but also close to query location.Spatial keyword search has many important applications,such as map search.Previous methods for spatial keyword search have the limitation that they only consider textual relevance of POIs to query keywords,and neglect the semantics of queries.So these methods may not be able to return relevant results or return many irrelevant results.To address this problem,this paper introduces a semantic-enhanced spatial keyword search method,named S^3(semantic-enhanced spatial keyword search).Given a query,S^3 analyzes the semantics of the query keywords to measure semantic distances of POIs to the query.Then,it utilizes a novel POI ranking mechanism by combining both semantic and spatial distance for effective POI search.S^3 has the following challenges.Firstly,S^3 introduces knowledge bases to help capture query semantics and introduces a ranking scoring function that considers both semantic distance and spatial distance.Secondly,it calls for instant search on large-scale POI data sets.To address this challenge,we devise a novel index structure GRTree,and develop some effective pruning techniques based on this structure.The extensive experiments on a real dataset show that S^3 not only produces high-quality results,but also has good efficiency and scalability.
出处 《计算机研究与发展》 EI CSCD 北大核心 2015年第9期1954-1964,共11页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61272090)
关键词 搜索 语义增强 知识库 语义距离 即时搜索 spatial keyword search semantic enhancement knowledge base semantic distance instant search
  • 相关文献

参考文献20

  • 1Budanitsky A, Hirst G. Evaluating wordnet-based measures of lexical semantic relatedness [J]. Computational Linguistics, 2006, 32(1) : 13-47.
  • 2Maguitman A G, Menczer F, Roinestad H, et al. Algorithmic detection of semantic similarity [C] //Proc of the 14th Int Conf on World Wide Web (WWW2005). New York:ACM, 2005:107-116.
  • 3Cong G, Jensen C S, Wu Dingming. Efficient retrieval of the top-k most relevant spatial Web objects [J]. Proceedings of the VLDB Endowment, 2009, 2(1) : 337-348.
  • 4Xiao Yanghua, Wu Wentao, Pei Jian, et al. Efficiently indexing shortest paths by exploiting symmetry in graphs [C] //Proc of the 12th Int Conf on Extending Database Technology (EDBT2009). New York: ACM, 2009: 493- 504.
  • 5Fan Ju, I.i Guoliang, Zhou Lizhu, et al. Seal: Spatio textual similarity search [J]. Proceedings of the VLDB Endowment, 2012, 5(9): 824-835.
  • 6Wang Yining, Wang Liwei, Li Yuanzhi, et al. A theoretical analysis of nDCG type ranking measures [C] //Proe of the 26th Annual Conf on Learning Theory (COLT2013). New York: ACM, 2013:25 -54.
  • 7黄瑞,史忠植.一种新的Web异构语义信息搜索方法[J].计算机研究与发展,2008,45(8):1338-1345. 被引量:9
  • 8Resnik P. Semantic similarity in taxonomy: An information based measure and its application to problems of ambiguity in natural language [J]. Journal of Artificial Intelligence Research, 1999, 11:95-130.
  • 9Couto F M, Silva M J. Disjunctive shared information between ontology concepts: Application to gene ontology [J]. Journal of Biomedical Semantics, 2011, 2(1): 1-16.
  • 10Ferlez J, Gams M. Shortest-path semantic distance measure in wordnet v2. 0 [J]. Information Society, 2004, 28 (4) : 381-386.

二级参考文献28

  • 1史忠植,董明楷,蒋运承,张海俊.语义Web的逻辑基础[J].中国科学(E辑),2004,34(10):1123-1138. 被引量:71
  • 2丁国栋,白硕,王斌.文本检索的统计语言建模方法综述[J].计算机研究与发展,2006,43(5):769-776. 被引量:19
  • 3Guha R, Mccool R, Miller E. Semantic search [C]//Proc of the 12th Int'l Conf on World Wide Web (WWW'03). New York: ACM, 2003.
  • 4Mayfield J, Finin T. Information retrieval on the semantic web: Integrating inference and retrieval [C]//Proc of the SIGIR Workshop on the Semantic Web. New York: ACM, 2003.
  • 5Zhang L, Yu Y, et al. An enhanced model for searching in semantic portals [C] //Proc of the 14th Int'l Conf on World Wide Web (WWW'05). New York: ACM, 2005.
  • 6Bao S, Wu X, et al. Optimizing Web search using social annotations [C] //Proc of the 16th Int'l Conf on World Wide Web (WWW'07). New York: ACM, 2007.
  • 7Furnas G W, Deerwester S, et al. Information retrieval using a singular value decomposition model of latent semantic structure [C] //Proc of the 11th Annual Int'l ACM SIGIR Conf on Research and Development in Information Retrieval (SIGIR'88). New York: ACM, 1988.
  • 8Berners-Lee T, Hendler J, Lassila O. The semantic Web [J].Scientific American, 2001, 284(5): 34-43.
  • 9Studer R, Benjamins V R, Fensel D. Knowledge engineering: Principles and methods [J]. Data and Knowledge Engineering, 1998, 25(1-2): 161-197.
  • 10O'Reilly T. What is web 2. 0: Design patterns and business models for the next generation of software [OL]. (2005-09) [2007-12]. http://www, oreilly, com/.

共引文献8

同被引文献20

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部