期刊文献+

一类带有分段常数变量的蚊子种群模型动力学分析

The dynamic behavior analysis of mosquito model with piecewise constant arguments and stage-structured
原文传递
导出
摘要 研究一类带有分段常数变量和阶段结构的蚊子种群模型的稳定性和分支行为.首先通过计算将该模型转化为对应的差分模型,利用线性稳定性理论讨论零平衡态和正平衡点局部渐近稳定的充分条件.其次利用分支理论研究在平衡态处产生Saddle-Node分支和Flip分支的充分条件,并且使用规范形理论和中心流形定理构造判断分支解稳定性的阈值公式.最后数值模拟不仅验证了理论分析的正确性,而且展示了模型复杂的动力学行为. Differential mosquito model with piecewise constant arguments and stage-structured is modeled. Firstly the discrete solutions of the model is achieved to obtain the local and bifurcation behaviors.Thus, the sufficient conditions for the local asymptotic stability about the zero and positive equilibrium are derived by using the linear stability theorem.Secondly it is shown that the mosquito model can undergo Saddle-Node bifurcation and Flip bifurcation nearby equilibrium when the bifurcation parameter exceeds a critical value. Furthermore, the formulas distinguishing the stability of bifurcation solutions are constructed by using the normal form; center mani- fold theorem and bifurcation theory.Finally numerical simulations are given to show the effectiveness of the theoretical analysis and exhibit the complex dynamic behavior.
作者 项晶菁
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第5期633-643,共11页 Journal of Yunnan University(Natural Sciences Edition)
基金 陕西省教育厅项目(15JK1433)
关键词 蚊子种群 阶段结构 分段常数变量 稳定性 分支 mosquito population stage-structured piecewise constant arguments stability, bifurcation
  • 相关文献

参考文献14

  • 1MAY R M.Biological populations obeying difference equations:stable points, stable cycles and chaos [ J ] .Journal of Theoretical Biology, 1975,51 (2) : 511-524.
  • 2MAY R M, OSTER G F. Bifurcations and dynamics complexity in simple ecological models [ J ] .The American Naturalist, 1976,110 (974) :573-599.
  • 3GOPALSAMY K, GYORI I, LADAS G.Oscillations of a class of delay equations with continuous and piecewise constant argu- ments [ J ].Funkcialaj Ekvacioj, 1989,32 (3) : 395-406.
  • 4GOPALSAMY K, LIU P.Persistence and global stability in a population model[ J] .Journal of Mathematical Analysis and Ap- plications, 1998,224 ( 1 ) :59-80.
  • 5UESUGI K, MUROYA Y, ISHIWATA E. On the global attractivity for a logistic equation with piecewise constant arguments [ J ].Journal of Mathematical Analysis and Applications, 2004,294 (2) : 560-580.
  • 6陈斯养,张艳.具有分段常数变量的捕食-被捕食模型的分支分析[J].兰州大学学报(自然科学版),2012,48(3):103-112. 被引量:15
  • 7王烈.带有分段常数变量和避难所的天敌一害虫模型的稳定性和分支行为[J].高校应用数学学报(A辑),2014,29(4):431-442. 被引量:5
  • 8AIELLO W G, FREEDMAN H I.A time-delay model of single-species growth with stage structure [ J ]. Mathematical Biosci- ences, 1990,101 (2) : 139-153.
  • 9袁媛,段复建.一类食饵具有阶段结构的时滞捕食系统的全局稳定性与Hopf分支[J].云南大学学报(自然科学版),2013,35(1):13-20. 被引量:10
  • 10SONG X Y, CHEN L S.ModeUing and analysis of a single-species system with stage structure and harvesting[ ,l ] .Mathemati- cal and Computer Modelling,2002,36( 1 ) :67-82.

二级参考文献42

  • 1赵学达,赵惠燕,刘光祖,郑立飞,李军.天敌胁迫下食饵种群动态模型的突变分析[J].西北农林科技大学学报(自然科学版),2005,33(4):65-68. 被引量:7
  • 2LIU Xiao-li, XIAO Dong-mei. Complex dynamic be- haviors of a discrete-time predator-prey system[J]. Chaos Solitons Fractals, 2007, 32(1): 80-94.
  • 3AGIZA H N, ELABBASY E M, ELMETWALLY H, et al. Chaotic dynamics of a discrete prey-predator model with holling type Ⅱ [J]. Nonlinear Anal, 2009, 10(1): 116-129.
  • 4CELIK C, DUMAN O. AUee effect in a discrete- time predator-prey system[J]. Chaos Solitons Frac- tals, 2009, 40(4): 1956-1962.
  • 5GOPALSAMY K, LIU Ping-zhou. Persistence and global stability in a population model[J]. J Math Anal Appl, 1998, 224(1): 59-80.
  • 6LIu Ping-zhou, GOPALSAMY K. Global stability and chaos in a population model with piecewise constant arguments[J]. Appl Math Comput, 1999, 101(1): 63-88.
  • 7GURCAN F, BOZKURT F. Global stability in a pop- ulation model with piecewise constant arguments[J]. J Math Anal Apple 2009, 360(1): 334-342.
  • 8OZTURK I, BOZKURT F. Stability analysis of a populations model with piecewise constant argu- ments[J]. Nonlinear Analysis: Real World Applica- tions, 2011, 12(3): 1532-1545.
  • 9Hu Zeng-yun, TENG Zhi-dong, ZHANG Long. Stabil- ity and bifurcation analysis of a discrete predator- prey model with non-monotonic fundtional re- sponse[J]. Nonlinear Analysis: Real World Appli- cations, 2011, 12(4): 2 356-2 377.
  • 10ZHANG X, CHEN L, NEUMAN A U. The stage - structure predator - prey model and optimal harvesting policy [ J ]. Math Bio- sci ,2000,101 : 139-153.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部