期刊文献+

一类二维分数阶偏微分方程解的适定性

Well-posedness of the 2D-fractional partial differential equations
原文传递
导出
摘要 研究一类二维分数阶偏微分方程的边值问题,主要包括两方面内容:一是研究了合适的分数阶Sobolev空间及分数阶算子的性质;二是发展了一个弱解的理论框架,并建立了弱解的适定性理论.这是构造数值方法(如有限元和谱方法等)求解二维分数阶偏微分方程的理论基础. We investigate the boundary value problem of two- dimensional fractional partial differential equations( FEPDEs). The main contributions of this work are twofold: first,we investigate suitable fractional Sobolev spaces for fractional partial differential equations and study the properties of the fractional operator. Then,we develop a theoretical framework of weak solutions and establish the well-posedness of the weak solutions. Consequently,this work provides the theory for constructing numerical method such as finite element method and spectral method for solving the fractional partial differential equations.
作者 苏延辉
出处 《福州大学学报(自然科学版)》 CAS 北大核心 2015年第4期435-439,共5页 Journal of Fuzhou University(Natural Science Edition)
基金 国家自然科学基金资助项目(11226081) 福建省自然科学基金资助项目(2013J05003)
关键词 分数阶导数 弱解 变分形式 适定性 fractional derivative weak solution variation formulation well-posedness
  • 相关文献

参考文献6

  • 1Ervin V J, Roop J P. Variational formulation for the stationary fractional advection dispersion equation[ J ]. Numer Meth P D E, 2007, 22(2) : 558 -576.
  • 2Ervin V J, Roop J P. Variational solution of fractional advection dispersion equations on bounded domains in R^d [J ]. Numer Meth P D E, 2007, 23(2) : 256 -281.
  • 3Li X J, Xu C J. A space - time spectral method for the time fractional diffusion equation [ J ]. SIAM J Numer Anal, 2009, 47(3) : 2 108 -2 131.
  • 4Li X J, Xu C J. Existence and uniqueness of the weak solution of the space - time fractional diffusion equation and a spectral method approximation[J]. Commun Comput Phys, 2010, 8(5) : 1 016 - 1 051.
  • 5Lin Y M, Xu C J. Finite difference/spectral approximation for the time fractional diffusion equations [ J ]. J Comput Phys, 2007, 225(2) : 1 533 -1 552.
  • 6Wyss W. The fractional diffusion equation [J]. J Math Phys, 1996, 27(11) : 2782 -2785.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部