摘要
研究一类二维分数阶偏微分方程的边值问题,主要包括两方面内容:一是研究了合适的分数阶Sobolev空间及分数阶算子的性质;二是发展了一个弱解的理论框架,并建立了弱解的适定性理论.这是构造数值方法(如有限元和谱方法等)求解二维分数阶偏微分方程的理论基础.
We investigate the boundary value problem of two- dimensional fractional partial differential equations( FEPDEs). The main contributions of this work are twofold: first,we investigate suitable fractional Sobolev spaces for fractional partial differential equations and study the properties of the fractional operator. Then,we develop a theoretical framework of weak solutions and establish the well-posedness of the weak solutions. Consequently,this work provides the theory for constructing numerical method such as finite element method and spectral method for solving the fractional partial differential equations.
出处
《福州大学学报(自然科学版)》
CAS
北大核心
2015年第4期435-439,共5页
Journal of Fuzhou University(Natural Science Edition)
基金
国家自然科学基金资助项目(11226081)
福建省自然科学基金资助项目(2013J05003)
关键词
分数阶导数
弱解
变分形式
适定性
fractional derivative
weak solution
variation formulation
well-posedness