期刊文献+

统计相关源信号分离模型与算法综述 被引量:2

Survey on statistical dependent source separation model and algorithms
原文传递
导出
摘要 统计相关源信号分离理论不仅有着广泛的应用背景,也为深入了解数据的本质结构提供了有效的分析工具.首先,重点分析和讨论一类特殊的相关源信号分离模型——独立子空间分析模型的可分离性;其次,分别介绍基于源信号稀疏性、统计测度、独立子空间分析、源信号时序结构、源信号有界性和非负性的各种相关源信号分离算法;再次,通过将加性噪声中的盲源分离和高光谱解混问题建模为统计相关源信号分离模型,表明了该方法的应用价值;最后,总结了相关源信号分离中存在的问题,并对下一步的研究思路进行了分析和展望. The statistical dependent source separation problem is a basic and important research topic in the field of blind source separation(BSS),because it not only has abundant potential applications,but also can gain further insights into the structure of the data.Firstly,the unified mathematical model of dependent source separation is constructed and the separability issues are discussed.Then,state-of-art algorithms to implement separation for dependent sources are surveyed from two aspects:statistical and deterministic,where the statistical method mainly includes sparsity based method,statistical measure based method,independent subspace analysis(IS A) based method and temporal structure based method.Meanwhile,the deterministic approach contains the bounded source signals based method and nonnegative source signals based method.The applications of the statistical dependent source separation problem are demonstrated by the hyperspectral unmixing problem and the BSS in the additive noise problem.Finally,some of the existing problems are listed,and the future research work is also presented.
出处 《控制与决策》 EI CSCD 北大核心 2015年第9期1537-1545,共9页 Control and Decision
基金 国家自然科学基金项目(61401401 61172086 61071188 61261033 U1204607) 中国博士后科学基金项目(2014M561998) 郑州大学青年教师启动基金项目(1411318029)
关键词 盲源分离 独立成分分析 相关成分分析 稀疏表示 高光谱解混 blind source separation independent component analysis dependent component analysis sparse representation hyperspectral unmixing
  • 相关文献

参考文献2

二级参考文献14

  • 1章晋龙,何昭水,谢胜利,刘海林.多个源信号混叠的盲分离几何算法[J].计算机学报,2005,28(9):1575-1581. 被引量:7
  • 2HE Zhaoshui XIE Shengli FU Yu.Sparse representation and blind source separation of ill-posed mixtures[J].Science in China(Series F),2006,49(5):639-652. 被引量:24
  • 3肖明,谢胜利,傅予力.基于频域单源区间的具有延迟的欠定盲分离[J].电子学报,2007,35(12):2279-2283. 被引量:20
  • 4Cao X R,,Liu R W.General approach to blind source separation[].IEEE Transactions on Signal Processing.1996
  • 5Comon P.Independent component analysis, a new concept?[].Signal Processing.1992
  • 6Suzuki K,Kiryu T,Nakada T.Fast and precise independent component analysis for high field fMRI time series tailored using prior information on spatiotemporal structure[].Human Brain Mapping.2001
  • 7Lu W,Rajapakse J C.Constrained ICA[]..2000
  • 8Lu W,Rajapakse JC.ICA with reference[].Proc ICA.2001
  • 9Tan H Z,Chow T W S.Blind identification of quadratic nonlinear models using neural networks with higher order cumulants[].IEEE Trans Indust Elect.2000
  • 10Tan H Z,Aboulnasr T.TOM-based blind identification of nonlinear Volterra systems[].IEEE Transactions on Instrumentation and Measurement.2006

共引文献16

同被引文献30

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部