期刊文献+

基于剪枝策略的骨干粒子群算法 被引量:8

Pruning strategy based bare bones particle swarm optimization
原文传递
导出
摘要 为了优化算法的全局探索能力和局部开发能力,提出一种基于两方面改进的骨干粒子群算法.提出一种进化方程,通过即时搜索域的分析说明该方程可以改善粒子多样性.提出粒子群"剪枝"策略:每当粒子搜索到新的群体最优位置时,剪去该粒子,同时初始化一个新位置以安插该粒子.理论分析指出,在增强全局探索能力的同时,合适的剪枝策略能增加局部开发能力.实验结果表明,所提出算法的性能较几种经典PSO算法有显著的提升. A bare bones particle swarm optimization(NPSO) algorithm is proposed to improve both global exploration and local exploitation.An evolution equation which obtains better swarm diversity is employed in the NPSO algorithm.Inspired by the apical dominance phenomenon in biology,a particle pruning strategy is introduced as follows:When a particle reaches a new best position of the swarm,it would be pruned and inserted to another position.Theoretical analysis shows that the pruning strategy can improve both global exploration and local exploitation.Finally,results of the experiments on benchmark problems show that the proposed algorithm obtains significant improvement when compared to some classical PSO algorithms.
机构地区 浙江大学工学部
出处 《控制与决策》 EI CSCD 北大核心 2015年第9期1591-1596,共6页 Control and Decision
关键词 骨干粒子群 剪枝策略 粒子多样性 全局探索能力 局部开发能力 bare bones PSO particle pruning strategy swarm diversity global exploration local exploitation
  • 相关文献

参考文献17

  • 1Kennedy J. Bare bones particle swarms[C]. Proc of the Swarm Intelligence Symposium. Indiana, 2003: 80-87.
  • 2Sun J, Fang W, Wu X, et al. Quantum-behaved particle swarm optimization: Analysis of individual particle behavior and parameter selection[J]. Evolutionary Computation, 2012, 20(3): 349-393.
  • 3Blackwell T. A study of collapse in bare bones particle swarm optimization[J]. IEEE Trans on Evolutionary Computation, 2012, 16(3): 354-372.
  • 4Yao J, Han D. Improved barebones particle swarm optimization with neighborhood search and its application on ship design[J]. Mathematical Problems in Engineering, 2013: 1-13.
  • 5Zhang H, Kennedy D D, Rangaiah G P, et al. Novel bare- bones particle swarm optimization and its performance for modeling vapor-liquid equilibrium data[J]. Fluid Phase Equilibria, 2011, 301(1): 33-45.
  • 6Zhang Y, Gong D, Geng N, et al. Hybrid bare-bones PSO for dynamic economic dispatch with valve-point effects[J]. Applied Soft Computing, 2014(18): 248-260.
  • 7史丽萍,王攀攀,胡泳军,韩丽.基于骨干微粒群算法和支持向量机的电机转子断条故障诊断[J].电工技术学报,2014,29(1):147-155. 被引量:40
  • 8Van Den Bergh E An analysis of particle swarm optimizers[D]. Pretoria: Department of Computer Science, University of Pretoria, 2006.
  • 9刘衍民,隋常玲,赵庆祯.基于K-均值聚类的动态多种群粒子群算法及其应用[J].控制与决策,2011,26(7):1019-1025. 被引量:24
  • 10范成礼,邢清华,范海雄,李响.带审敛因子的变邻域粒子群算法[J].控制与决策,2014,29(4):696-700. 被引量:21

二级参考文献49

  • 1杨俊燕,张优云,赵荣珍.支持向量机在机械设备振动信号趋势预测中的应用[J].西安交通大学学报,2005,39(9):950-953. 被引量:25
  • 2刘洪波,王秀坤,谭国真.粒子群优化算法的收敛性分析及其混沌改进算法[J].控制与决策,2006,21(6):636-640. 被引量:62
  • 3黄进,牛发亮,杨家强.基于双PQ变换的感应电机转子故障诊断[J].中国电机工程学报,2006,26(13):135-140. 被引量:31
  • 4韩江洪,李正荣,魏振春.一种自适应粒子群优化算法及其仿真研究[J].系统仿真学报,2006,18(10):2969-2971. 被引量:122
  • 5Kennedy J, Eberhart R. Particle swarm optimization [C]. IEEE Int Conf on Neural Networks. Piscataway: IEEE Service Center, 1995: 1942-1948.
  • 6Shi Y, Eberhart R. A modified particle swarm optimizer [C]. IEEE World Conf on Computational Intelligence. Piscataway: IEEE Press,1998: 69-73.
  • 7Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization [C]. Proc of the IEEE Conf on Evolutionary Computation. Piscataway: IEEE Press, 2001 : 101-106.
  • 8Zhang L P, Yu H J, Hu S X. A new approach to improve particle swarm optimization[C]. Lecture Notes in Computer Science. Chicago: Springer-Verlag, 2003: 134-139.
  • 9Krink T, Vesterstroem J S, Riget J. Particle swarm optimization with spatial particle extension[C]. Proe of the IEEE Conf on Evolutionary Computation. Honolulu: IEEE Inc, 2002: 1474-1479.
  • 10Clerc M. The swarm and queen.. Towards deterministic and adaptive particle swarm optimization [C]. Proc of IEEE Conf on Evolutionary Computation. Washington D C, 1999: 1951-1957.

共引文献174

同被引文献52

引证文献8

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部