期刊文献+

基于对立搜索和混沌变异的磷虾觅食优化算法 被引量:9

An improved krill herd algorithm based on oppositional searching and chaos mutation
原文传递
导出
摘要 针对磷虾觅食算法存在容易陷入局部极值、收敛速度慢的问题,提出一种新的改进算法.首先,给出启发式二次对立点的定义并证明其性能优势,进而构造一种启发式二次对立搜索算子,以加快算法的收敛速度,提高全局探索能力;然后,采用分段线性混沌映射(PWLCM)混沌函数构造一种变尺度混沌变异算子,以增强算法跳出局部极值的能力.仿真实验表明,所提出算法能有效避免陷入局部极值,在收敛速度和寻优精度上得到大幅改善. An improved algorithm based on oppositional searching and chaos mutation is proposed in order to deal with the deficiencies of the traditional krill herd optimization algorithm,including poor ability for avoiding local optimum and low convergence rate.The definition of the heuristic quasi-oppositional point is given,and its outstanding performance is proven.Then,a heuristic quasi-oppositional searching operator is designed for accelerating convergence rate and enhancing the global exploration ability of the algorithm.Meanwhile,the mutative scale chaos mutation operator based on the piecewise linear chaotic map(PWLCM) mapping function is constructed for boosting the ability of escaping local optimum.Simulation results on benchmark functions show that the proposed algorithm can avoid local optimum effectively,and achieves significant improvements in terms of convergence speed and accuracy.
出处 《控制与决策》 EI CSCD 北大核心 2015年第9期1617-1622,共6页 Control and Decision
基金 国家自然科学基金重大项目(91218301) 国家自然科学基金面上项目(71473201) 教育部人文社会科学研究一般项目(14XJC630010) 中央高校基本科研业务费专项资金项目(JBK130503 JBK150503)
关键词 磷虾觅食算法 启发式二次对立点 分段线性混沌映射混沌函数 局部极值 krill herd algorithm heuristic quasi-oppositional point PWLCM chaotic mapping function local optimum
  • 相关文献

参考文献17

  • 1Gandomi A H, Alavi A H. Krill herd: A new bio-inspired optimization algorithm[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(12): 4831- 4845.
  • 2Singh G E Singh A. Comparative study of krill herd, firefly and cuckoo search algorithms for unimodal and multimodal optimization[J]. Int J of Intelligent Systems and Applications, 2014, 6(3): 35-49.
  • 3Gandomi A H, Talatahari S, Tadbiri F, et al. Krill herd algorithm for optimum design of truss structures[J]. Int J of Bio-Inspired Computation, 2013, 5(5): 281-288.
  • 4Mandal B, Roy P K, Mandal S. Economic load dispatch using krill herd algorithm[J]. Int J of Electrical Power and Energy Systems, 20!4, 57(5): 1-10.
  • 5Wang G G, Guo L H, Gandomi A H, et al. Chaotic la'ill herd algorithm[J]. Information Sciences, 2014, 274(8): 17-34.
  • 6Wang G GI Guo L H, Wang H Q, et al. Incorporating mutation scheme into krill herd algorithm for global numerical optimization[J]. Neural Computing and Applications, 2014, 24(3/4/5): 853-871.
  • 7Wang G G, Gandomi A H, Alavi A H. Stud krill herd algorithm[J]. Neurocomputing, 2014, 128(5): 363-370.
  • 8Wang G G, Gandomi A H, Alavi A H. An effective krill herd algorithm with migration operator in biogeography- based optimization[J]. Applied Mathematical Modelling, 2014, 38(9/10): 2454-2462.
  • 9Li J P, Tang Y G, Hua C C, et al. An improved krill herd algorithm: Krill herd with linear decreasing step[J]. Applied Mathematics and Computation, 2014, 234(5): 356-367.
  • 10Hofmann E E, Haskell A G, Klinck J M, et al. Lagrangian modelling studies of antarctic krill (Euphasia superba) swarm formation[J]. ICES J of Marine Science, 2004, 61(4): 617-631.

二级参考文献7

  • 1Clerc M, Kennedy J. The particle swarm:explosion, stability, and convergence in a multidimensional complex space[J]. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58-73.
  • 2Cheng-Jian Lin, Cheng-Hung Chen, Chin-Teng Lin, et al. A hybrid of cooperative particle swarm optimization and cultural algorithm for neural fuzzy networks and its prediction applications[J]. IEEE Trans on Systems, Man and Cybernetics-part C: Applications and Reviews, 2009, 39(1): 55-62.
  • 3Eberhart R C, Shi Y. Comparing inertia weights and constriction factors in particle swarm optization[C]. Proc of the IEEE Congress on Evolutionary Computation. La Jolla:IEEE, 2001, 1: 84-88.
  • 4Clerc M, Kennedy J. The particle swarm: Explosion, stability, and convergence in a multidimensional complex space[J]. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58-73.
  • 5潘宏侠,黄晋英,毛鸿伟,刘振旺.基于粒子群优化的故障特征提取技术研究[J].振动与冲击,2008,27(10):144-147. 被引量:13
  • 6林川,冯全源.粒子群优化算法的信息共享策略[J].西南交通大学学报,2009,44(3):437-441. 被引量:18
  • 7唐剑,史浩山,杨奇,邢云冰.动态环境下分布式自适应粒子群优化算法[J].系统仿真学报,2009,21(17):5431-5435. 被引量:3

共引文献20

同被引文献91

引证文献9

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部