期刊文献+

基于SENSE和GRAPPA的并行磁共振图像重建算法 被引量:4

Parallel magnetic resonance imaging reconstruction algorithm based on generelized autocalibrating patially parallel acquisitions and sensitivity encoding
下载PDF
导出
摘要 并行磁共振成像技术降低了采样时间,提高了成像速度和图像分辨率,但重建图像信噪比有所下降。为此提出了一种基于SENSE(Sensitivity Encoding)和GRAPPA(Gene Relized Autocalibrating Patially Parallel Acquisitions)的并行成像算法,降低由于减少采样行而造成的信噪比损失。在采集较少K空间中心自标定(ACS)行基础上,先用GRAPPA算法拟合出更多中心数据估计得到较为精确的线圈灵敏度,采用共轭梯度法进行图像重建,得到质量较好的重建图像,进而结合估计的线圈灵敏度进行交替迭代优化,计算出误差较小、分辨率较高的最终重建图像。采用了不同加速因子的人脑磁共振K空间欠采样数据以验证该算法的重建性能。仿真实验结果表明,该算法重建出的MR图像从视觉效果上和定量对比结果上都优于已有算法。尤其是在加速因子较大、采样行数较少时可以重建出质量更高的磁共振图像,具有更低的归一化均方误差和更高的信噪比(能提高22%)。新算法降低K空间采样行的同时,提高了并行磁共振重建图像信噪比并降低了噪声干扰。 Parallel magnetic resonance (MR) imaging technology reduces sampling time, improves imaging speed and image resolution, but reduces the signal- to- noise ratio (SNR) of reconstruction image. A parallel imaging algorithm based on the sensitivity encoding (SENSE) and generelized autocalibrating patially parallel acquisitions (GRAPPA) was proposed to reduce the loss of SNR caused by the reducing of sampling time. GRAPPA algorithm was used to fit more missing central data in central K-space with a small number of autocalibration signal lines in order to estimate and generate more accurate coil sensitivities. The better reconstruction images were obtained by conjugate-gradient. And then combined with estimated coil sensitivities, alternating iterative optimization was carded out to calculate the final reconstruction image with small error and high image resolution. The sampling data in the human brain MR K-space of different accelerated factors were applied to verify the reconstruction function of the algorithm. The simulation experiences showed that MR images reconstructed by the proposed algorithm were better than those reconstructed by the conventional algorithm in visual effects and quantitative eomparis0n results. When the accelerated factors were larger and the number of sampling lines was small, the MR images with higher quality were reconstructed, with lower normalized mean squared error and higher SNR which could be improved by 22%. The proposed algorithm can reduce the number of sampling lines in K-space, and improve the SNR of parallel reconstruction MR images, and lower the noise interference.
出处 《中国医学物理学杂志》 CSCD 2015年第5期617-621,共5页 Chinese Journal of Medical Physics
基金 国家自然科学基金(11105096) 江苏省自然科学基金(BK20131171) 苏州市科技项目(SYG201425)
关键词 并行磁共振图像重建 SENSE算法 GRAPPA算法 K空间 信噪比 线圈灵敏度 parallel magnetic resonance imaging reconstruction sensitivity encoding algorithm generelized autocalibrating patially parallel acquisitions algorithm K-space signal-to-noise ratio coil sensitivity
  • 相关文献

参考文献15

  • 1徐雅洁,祝祯伟,田浩然,张广才,常严,杨晓冬.非线性梯度场下并行成像技术进展[J].中国医学影像技术,2012,28(11):2098-2101. 被引量:3
  • 2Carlson JW. An algorithm for NMR imaging reconstruction based on multiple RF receiver coils[J]. J Magn Reson, 1987, 74(2): 376-380.
  • 3肖智魁,胡广书.并行磁共振成像的若干主要算法[J].国际生物医学工程杂志,2007,30(2):81-85. 被引量:4
  • 4陈武凡.并行磁共振成像的回顾、现状与发展前景[J].中国生物医学工程学报,2005,24(6):649-654. 被引量:19
  • 5Griswold MA, Jakob PM, Heidemann RM, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA)[J]. Magn Resort Med, 2002, 47(6): 1202-1210.
  • 6Artin U, Mark JM, Patrich V. ESPIRiT: an eigenvalue approach to autocalibrating parallel imaging reconstruction algorithms[J]. Magn Reson Med, 2014, 71(3): 990-1001.
  • 7Pruessmann KP, Weiger M, Scheidegger MB, et al. SENSE: sensitivity encoding for fast MRI[J]. Magn Reson Med, 1999, 42 (5): 952-962.
  • 8Mckenzie CA, Yeh EN, Ohliger MA. Self-calibrating parallel ima- ging with automatic coil sensitivity extraction[J]. Magn Reson Med, 2002, 47(3): 529-538.
  • 9Pruessmann KP, Weiger M, Boernert P. Advances in sensitivity encoding with arbitrary K-space trajectories[J]. Magn Reson Med, 2001, 46(4): 638-651.
  • 10Blaimer M, Breuer F, Mueller M, et al. SMASH, SENSE, PILS, GRAPPA: How to choose the optimal method[J]. Top Magn Reson Imaging, 2004, 15(4): 223-236.

二级参考文献49

  • 1Carlson JW.An algorithm for NMR imaging reconstruction based on multiple RF receiver coils[J].J Magn Reson,1987,74:376-380.
  • 2Ra JB,Rim CY.Fast imaging using subencoding data sets from multiple detectors[J].Magn Reson Med,1993,30(1):142-145.
  • 3Blaimer M,Breuer F,Mueller M,et al.SMASH,SENSE,PILS,GRAPPA:How to choose the optimal method[J].Top Magn Reson Imaging,2004,15:223-236.
  • 4Sodickson DK,Manning WJ.Simultaneous acquisition of spatial harmonics(SMASH):fast imaging with radiofrequency coil arrays[J].Magn Reson Med,1997,38(4):591-603.
  • 5Jakob PM,Griswold MA,Edelman RR,et al.AUTO-SMASH:a self-calibrating technique for SMASH imaging[J].MAGMA,1998,7:42-54.
  • 6Heidemann RM,Griswold MA,Haase A,et al.VD-AUTO-SMASH imaging[J].Magn Reson Med,2001,45(6):1066-1074.
  • 7Griswold MA,Jakob PM,Heidemann RM,et al.Generalized autocalibrating partially parallel acquisitions(GRAPPA)[J].Magn Reson Med,2002,47(6):1202-1210.
  • 8Bydder M,Larkman DJ,Hajnal JV.Generalized SMASH imaging[J].Magn Reson Med,2002,47(1):160-170.
  • 9Pruessmann KP,Weiger M,Scheidegger MB,et al.Sensitivity encoding for fast MRI[J].Magn Reson Med,1999,42(5):952-962.
  • 10Griswold MA,Jakob PM,Nittka M,et al.Partially parallel imaging with localized sensitivities(PILS)[J].Magn Reson Med,2000,44:602-609.

共引文献25

同被引文献22

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部