期刊文献+

基于模糊C均值自动随机游走算法在脑肿瘤分割中的应用

Fuzzy c-means random walks algorithm in brain tumor segmentation
下载PDF
导出
摘要 目的:经典随机游走算法是使用最为广泛的交互式图像分割方法之一,分割精度较高,但是该算法执行过程需要人工参与,由医生手动勾选种子点,这在临床使用中是比较麻烦和耗时的,在一定程度上降低了该算法的效率。针对该问题,本文期望提出一种自动的随机游走分割方法。方法:首先使用模糊C均值算法对待分割图像进行聚类,根据聚类的隶属度进行阈值分割得到初步分割结果;再对分割结果进行形态学开放处理,仅保留初步分割结果的主要区域,并将处理后的区域中的所有像素点作为随机游走算法的种子点,利用随机游走算法对图像实施分割,得到最终分割结果。本文结合模糊C均值算法和形态学处理,实现了自动的随机游走。使用改进后的算法对MR图像中的脑肿瘤和水肿区域实施自动分割,验证本文算法的有效性和准确性。结果:本文方法在实现自动化分割的同时,其分割精度明显优于模糊C均值算法的分割结果。结论:本文提出的改进方法能准确地自动分割出目标区域,并且较模糊C均值方法的分割结果有显著性提高。 Objective The typical random walks algorithm is one of most popular interactive segmentation methods, with a high precision. However, the random walks algorithm needs to select the initial seed points manually, which is usually tedious and time-consuming in clinical, lowering the efficiency. An automatic random walks algorithm is proposed in this paper to solve these problems, Methods The images to be segmented were firstly clustered by fuzzy c-means (FCM) algorithm. The primary segmentation results were obtained by threshold segmentation based on the membership of the cluster. And then the segmentation results were processed by morphological processes to preserve only the main segmentation regions of primary segmentation results. All the pixels in the processed segmentation regions were taken as the seed points for the random walks algorithm to get the final results. This algorithm, combined with FCM algorithm and morphological process, achieved the automatic random walks. Finally, the proposed algorithm segmented the brain tumor and edema in magnetic resonance images to verify its affectivity and accuracy. Results The proposed method could achieve the automatic segmentation, and the segmentation results of proposed method were more precise than those of FCM algorithm. Conclusion The results show that the proposed method can segment the target region automatically and precisely, significantly improving the segmentation accuracy.
出处 《中国医学物理学杂志》 CSCD 2015年第5期707-710,共4页 Chinese Journal of Medical Physics
基金 广东省医学科学技术研究基金项目(B2014080)
关键词 随机游走 模糊C均值 形态学处理 图像分割 脑肿瘤 random walks algorithm fuzzy c-means morphology process image segmentation brain tumor
  • 相关文献

参考文献7

  • 1Grady L, Funka-Lea G. Multi-label image segmentation for medical applications based on graph-theoretic electrical potentials[J]. Com- puter Vision and Mathematical Methods in Medical and Biomedical Image Analysis, 2004, (3117): 230-245.
  • 2Grady L, Schiwietz T, Aharon S, et al. Random walks for interactive organ segmentation in two and three dimensions: implementation and validation[J]. Medical Image Computing and Computer- Assisted Intervention, 2005, (3750): 773-780.
  • 3Grady L, Random walks for image segmentation[J]. IEEE Trans PatternAnalys Mach Intellig, 2006, 28:1768-1783.
  • 4曹颖,郝欣,朱晓恩,夏顺仁.基于自动随机游走的乳腺肿块分割算法[J].浙江大学学报(工学版),2011,45(10):1753-1760. 被引量:9
  • 5Dunn JC. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters[J], Cybernetics, 1973, 3 (3).
  • 6Xue B, Sapiro G. A geodesic framework for fast interactive image and video segmentation and matting[C]. Computer Vision, ICCV 2007. IEEE 1 lth International Conference on, 2007: 1-8.
  • 7Boykov YY, Jolly MR Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images[C]. Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on, 2001:105-112.

二级参考文献27

  • 1李宏言,盛利元,陈良款,李更强.基于二维最大熵原理和改进遗传算法的图像阈值分割[J].计算机与现代化,2007(2):34-37. 被引量:12
  • 2TANG J S, RANGAYYAN R M, XU J, et al. Com- puter-aided detection and diagnosis of breast cancer with mammography: recent advances[J]. IEEE Transactions on Information on Technology in Biomedicine, 2009, 13 (2) : 236 - 251.
  • 3CHENG H D, SHI X J, MIN R, et al. Approaches for automated detection and classification of masses in mammo- grams [J]. Pattern Recognition, 2006, 39(4) .. 646 - 668.
  • 4BRZAKOVIC D, LUO X M, BRZAKOVIC P. An approach to automated detection of tumors in mammo- grams[J]. IEEE Transaction on Medical Imaging, 1990, 9(3): 233-241.
  • 5LI L, QIAN W, CLARKE L P, et al. Improving mass detection by adaptive and multiscale processing in digi- tized mammograrns [J]. Proceedings of SPIE, 1999, 3661: 490- 498.
  • 6LANKTON S, TANNENBAUM A R. Localizing region-based active contours [J].IEEE/Transactions on Image Processing, 2008, 17(11): 2029 -2039.
  • 7GRADY L. Random walks for image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(11) .. 1768 - 1783.
  • 8GRADY L, SCHIWIETZ T, AHARON S, et al. Ran- dom walks for interactive organ segmentation in two and three dimensions.. Implementation and validation [J]. Medical Image Computing and Computer-assistedIntervention, 2005, 3750.. 773-780.
  • 9JIANG L, SONE E M, XU X Y, et al. Automated detection of breast mass spiculation levels and evalua- tion of scheme performance [J]. Academic Radiology, 2008, 15(12): 1534-1544.
  • 10ETTLIN C. Global breast cancer mortality statistics[J].CA: A Cancer Journal for Clinicians, 1999, 49(3) : 138 - 144.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部