摘要
记环R=F_p^k+uF_p^k+u^2F_p^k,定义了一个从R^n到F_p^k^(2np^k)的Gray映射.利用Gray映射的性质,研究了环R上任意长循环码.证明了环R上任意长码是循环码当且仅当它的Gray象是F_p^k上的准循环码.特别的,环R上的线性循环码的Gray象是F_p^k上的线性准循环码.
Let R = F_p^k + uF_p^k + u^2F_p^k,a Gray map from R^n to F_(p^k)^(2np^k) is defined.Base on the property of Gray map,cyclic codes of arbitrary length over R are studied.It is proved that a code of arbitrary length over R is a cyclic code if and only if its Gray image is a quasi-cyclic code over F_p^k.In particular,the Gray image of a linear cyclic code over R is a linear quasicyclic code over F_p^k.
出处
《数学的实践与认识》
北大核心
2015年第16期229-231,共3页
Mathematics in Practice and Theory
基金
国家自然科学基金(61379004)
江苏省高校研究生创新计划项目(KYZZ15_0360)