期刊文献+

均匀划分

Uniform partitions
原文传递
导出
摘要 如果一个集合能划分成两两不交且元素个数都相同的一些子集合,则称这些子集合组成原集合的一个均匀划分.Chung-Feller定理证明了自由Dyck路能被均匀划分,而其中一类为Dyck路.本文从Chung-Feller定理及其推广出发,综述关于组合对象的均匀划分的研究成果. If a set can be partitioned into disjoint subsets which have the same cardinality, then we call the set has a uniform partition. The classic Chung-Feller theorem says that a free Dyck path has a uniform partition, and one of the subsets is a Dyck path. In this paper, from classic Chung-Feller theorem and its generalizations, we survey the research on uniform partitions for combinatorial objects.
出处 《中国科学:数学》 CSCD 北大核心 2015年第9期1389-1402,共14页 Scientia Sinica:Mathematica
基金 高等学校博士学科点专向科研基金(批准号:20110073120068) 台湾自然科学基金(批准号:101-2115-M-001-013-MY3)资助项目
关键词 泊车函数 波动理论 Chung-Feller定理 Dyck路 格路 均匀划分 有根格路 parking function fluctuation theory Chung-Feller theorem Dyck path lattice path uniformpartition rooted lattice path
  • 相关文献

参考文献1

二级参考文献19

  • 1Ma J, Yeh Y N. Refinements of (n, m)-Dyck paths. European J Combin, 2011, 32:92-99.
  • 2MacMahon P A. Combinatory Analysis. New York: Chelsea Publishing, 1960.
  • 3Mohanty S G. Lattice Path Counting and Applications. New York: Academic Press, 1979.
  • 4Narayana T V. Cyclic permutation of lattice paths and the Chung-Feller theorem. Scand Actuar J, 1967, 1967:23-30.
  • 5Narayana T V. Lattice Path Combinatorics with Statistical Applications. Buffalo: University of Toronto, 1979.
  • 6Raney G N. Functional composition patterns and power series reversion. Trans Amer Math Soc, 1960, 94:441-451.
  • 7Riordan J. Ballots and trees. J Combin Theory, 1969, 6:408-411.
  • 8Wendel J G. Left-continuous random walk and the Lagrange expansion. Amer Math Monthly, 1975, 82:494-499.
  • 9Woan W J. Uniform partitions of lattice paths and Chung-Feller generalizations. Amer Math Monthly, 2001, 108: 556-559.
  • 10Callan D. Pair them up! A visual approach to the Chung-Feller theorem. College Math J, 1995, 26:196-198.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部