期刊文献+

关于Hermite展开和Laguerre展开的Hardy-Littlewood型定理和系数乘子 被引量:1

On Hardy-Littlewood type theorems and coefficient multipliers for Hermite and Laguerre expansions
原文传递
导出
摘要 本文给出关于Hermite展开和Laguerre展开的系数乘子理论的研究进展的综合评述,主要侧重于本文作者在近期关于这一课题取得的成果,内容包括:关于Hermite展开的Hardy不等式的研究背景和解决过程,关于广义Hermite展开的Hardy-Littlewood型定理,Hardy空间中的函数关于广义Hermite展开和多元Hermite展开的各种系数乘子定理和Paley型不等式,Hardy空间中的函数关于Laguerre展开的系数乘子定理等. This paper surveys the recent advances of the theory of coefficient multipliers associated with Hermite and Laguerre expansions, with an emphasis on the results of the authors on the topic. It includes, the background and the solution of the Hardy inequality associated with Hermite expansions, the Hardy-Littlewood type theorems associated with generalized Hermite expansions, several theorems about coefficient multipliers and the Paley type inequalities of functions in Hardy spaces associated with generalized Hermite expansions and multiple Hermite expansions, and the theorems about coefficient multipliers of functions in Hardy spaces associated with Laguerre expansions.
出处 《中国科学:数学》 CSCD 北大核心 2015年第9期1457-1472,共16页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11371258) 北京市自然科学基金(批准号:1122011)资助项目
关键词 Hardy-Littlewood定理 系数乘子 Hermite函数 LAGUERRE函数 HARDY空间 HARDY不等式 Paley不等式 Hardy-Littlewood theorem coefficient multipliers Hermite function Laguerre function Hardyspace Hardy inequality Paley inequality
  • 相关文献

参考文献45

  • 1Thangavelu S. Harmonic Analysis on the Heisenberg Group. Boston: Birkhguser, 1998.
  • 2Thangavelu S. Lectures on Hermite and Laguerre Expansions. Princeton: Princeton University Press, 1993.
  • 3Zygmund A. Trigonometric Series, vols. I and II. 2nd ed. Cambridge: Cambridge University Press, 1959.
  • 4Duren P L. Theory of/arp Spaces. New York: Academic Press, 1970.
  • 5Colzani L, Travaglini G. Hardy-Lorentz spaces and expansions in eigenfunctions of the Laplace-Beltrami operator on compact manifolds. Colloq Math, 1990, 58:305 -316.
  • 6Thangavelu S. On regularity of twisted spherical means and special Hermite expansion. Proe Indian Acad Sci Math Sci, 1993, 103:303 -320.
  • 7Stein E M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton: Princeton University Press, 1993.
  • 8Torchinsky A. Real-Variable Methods in Harmonic Analysis. Orlando: Academic Press, 1986.
  • 9Szeg5 G. Orthogonal Polynomials. 4th ed. Providence, RI: Amer Math Soc, 1975.
  • 10Chihara T S. An Introduction to Orthogonal Polynomials. New York: Gordon and Breach, 1978.

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部