期刊文献+

类Vandermonde恒等式的新组合恒等式:第一部分 被引量:5

Novel combinatorial identities analogous to those of Vandermonde, part Ⅰ
原文传递
导出
摘要 Vandermonde卷积恒等式为n∑k=0(xk)(yn-k)=(x+yn),其中x和y为复数,n为非负整数.本文研究如下形式n∑k=0(x k)(y k)=(x+yn)+R(x,y,n)与其他相关扩充的关系. The Vandermonde convolution identity states thatn∑k=0(x k)(y n- k)=(x + y n),valid for all complex x and y, and all integers n 0. In this paper we investigate relations of the formn∑k=0(x k)(y k)=(x + y n)+ R(x, y, n)and other related expansions.
出处 《中国科学:数学》 CSCD 北大核心 2015年第9期1505-1512,共8页 Scientia Sinica:Mathematica
关键词 组合恒等式 Vandermonde卷积 代数恒等式 combinatorial identities Vandermonde convolution algebraic identities
  • 相关文献

参考文献6

  • 1Gould H W. Combinatorial Identities: A Standardized Set of Tables Listing 500 Binomial Coefficient Summations 2nd ed. Morgantown: Published by the author, 1972.
  • 2Bailey W N. The partial sum of the coefficients of the hypergeometric series. J London Math Soc, 1931, sl-6:4041.
  • 3Bailey W N. Generalized Hypergeometric Series. Cambridge Tracts in Mathematics and Mathematical Physics, 32.Cambridge: Cambridge University Press, 1935.
  • 4Nanjundiah T S. Remark on a note of P. Turn. Amer Math Monthly, 1958, 65:354 -354.
  • 5Schwatt I J. An Introduction to the Operations with Series. Philadelphia: The Press of the University of Pennsylvania 1924.
  • 6Reprinted by New York: Chelsea Publishing Company, 1962.

同被引文献29

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部