摘要
线性格Ln(q)是q元域上n维线性空间的所有子空间组成的格.两个子空间称为t-交的,如果它们交空间的维数不小于t.已知线性格的1-交反链满足LYM(Lubell-Yamamoto-Meschalkin)-型不等式,本文讨论线性格中t-交反链的LYM-型不等式,并在一些特殊情形下证明该不等式.
The linear lattice Ln(q) is the lattice of subspaces of the n-dimensional vector space over the field of q elements. Two subspaces are called t-intersecting if the dimension of their intersection is greater than or equal to t. It is well known that 1-intersecting antichains in Ln(q) satisfy LYM-type inequality. In this paper, we discuss the LYM-type inequality for t-intersecting antichains, and establish it in some special cases.
出处
《中国科学:数学》
CSCD
北大核心
2015年第9期1513-1522,共10页
Scientia Sinica:Mathematica
基金
RGC Competitive Earmarked Research Grants(批准号:600811)
国家自然科学基金(批准号:11171224和11231004)资助项目
关键词
线性格
交族
LYM-型不等式
linear lattice
intersecting family
LYM-type inequality