期刊文献+

基于感知对比度的图像清晰度客观评价模型 被引量:4

Objective image sharpness metric based on perceptual contrast
原文传递
导出
摘要 图像清晰度是评价图像质量时常用的指标之一。现有的清晰度评价模型未能充分考虑人眼视觉的亮度掩盖特性。为此,在均方根对比度基础上,考虑人眼亮度掩盖特性,通过计算图像中人眼感兴趣区域(包含细节、边缘和纹理)的感知对比度构造一种无参考的图像清晰度客观评价模型。并利用IVC数据库来验证模型,结果表明,与已有的4种清晰(模糊)度评价模型相比,该模型的评价结果更接近人眼主观感受,且计算量小,运算耗时短,是一种简单有效的图像清晰度评价模型。 Image sharpness is one of the common metrics for image quality assessment. Existing sharpness metrics have not given enough consideration to the human luminance masking effect. The root mean squared contrast model is im- proved by considering the human luminance masking effect. A perceptual contrast model is presented. A no-reference sharpness metric is established by averaging the perceptual contrast over the region of interest (contains image details, edges, and texture). IVC database is used to test the proposed sharpness metric. Experimental results show that, com- pared with four existing sharpness (blur) metrics, the proposed perceptual sharpness metric provides better predictions which more closely matches to the human visual perception, and has lower computational complexity. The sharpness metric is simple but effective.
出处 《光学技术》 CAS CSCD 北大核心 2015年第5期396-399,共4页 Optical Technique
基金 国家自然科学基金项目(61231014 61271407) 高等学校博士学科点专项科研基金(20131101130002) 山东省自然科学基金(ZR2012FL16 ZR2014FP013) 青岛市应用基础研究计划项目(14-2-4-115-jch) 中央高校基本科研业务费专项资金(14CX02029A)
关键词 图像对比度 图像清晰度 客观评价 人眼亮度掩盖特性 image contrast image sharpness objective evaluation human luminance masking effect
  • 相关文献

参考文献15

  • 1Pedersen M, et al. Attributes of image quality for color prints [J]. Journal of Electronic Imaging, 2010, 19(1): 011016.
  • 2Caviedes J, Oberti F. A new sharpness metric based on local kurtosis, edge and energy information[J]. Signal Proeessing Image Communication, 2004, 19(2): 147--161.
  • 3Marziliano P, et al. Perceptual blur and ringing metrics: appli- cation to JPEG2000[J]. Signal Processing: Image Communica- tion, 2004, 19(2): 163--172.
  • 4Ferzli R, et al. A no-reference objective image sharpness metric based on the notion of just noticeable blur(JNB)[J]. IEEE Transactions on Image Processing, 2009, 18(4): 717--728.
  • 5Narvekar N D, et al. A no-reference image blur metric based on the cumulative probability of blur detection(CPBD)[J]. IEEE Transactions on Image Processing, 2011, 20(9): 2678--2683.
  • 6Crete F, et al. The blur effect: perception and estimation with a new no-reference perceptual blur metric [J]. Proceedings of SHE, 2007.. 649201-649201-64911.
  • 7Vu C T, et al. $3.. A spectral and spatial measure of local per- ceived sharpness in natural images[J]. IEEE Transactions on Image Processing, 2012, 21(3).. 934--945.
  • 8Frazor R A, et al. Local luminance and contrast in natural ima- ges[J]. Vision research, 2006, 46(10): 1585--1598.
  • 9Netravali A N, Haskell B G. Digital pictures: representation and compression[M]. New York: Perseus Publishing, 1988: 266--269.
  • 10高绍姝,金伟其,王霞,王岭雪,骆媛.可见光与红外彩色融合图像感知清晰度评价模型[J].光谱学与光谱分析,2012,32(12):3197-3202. 被引量:7

二级参考文献3

共引文献6

同被引文献29

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部