期刊文献+

纳米银六角阵列在掺氧氮化硅中的局域表面等离激元共振特性仿真

Simulation of localized surface plasmon resonance of hexagonal Ag nanoarrays and amorphous oxidized silicon nitride
下载PDF
导出
摘要 通过COMSOL Multiphysics和Lumerical FDTD solution对不同尺寸纳米银六角阵列在非晶态掺氧氮化硅(a-SiN_x:O)介质中的局域表面等离激元共振(LSPR)特性进行仿真,计算结果表明半径为25 nm的纳米银六角阵列形成的局域表面等离激元(LSP)与厚度为70 nm的a-SiN_x:O的蓝光发射(460 nm)的共振效果最为显著,随着纳米银颗粒尺寸的增大其消光共振峰红移.在460 nm波长激发下半径为25 nm的纳米银阵列在a-SiN_x:O中的极化强度和表面极化电荷的分布模拟证明了该阵列在460 nm激发下形成的LSP为偶极子极化模式,通过对该尺寸的纳米银阵列的LSP在a-SiN_x:O中的最强垂直辐射空间计算,获得了银颗粒上方a-SiN_x:O的最佳厚度为30 nm,仿真结果对硅基蓝光发射器件(450-460 nm)的设计提供了重要的理论参考. Simulation on the properties of localized surface plasmon resonance (LSPR) of different sized hexagonal Ag nanoar-rays embedded in the amorphous oxidized silicon nitride(a-SiNx:O) matrix has been carried out by using COMSOL Multiphysics and FDTD Solution simulation software. Through the calculation of the scattering and absorption cross section of Ag array with different radius, we find that the position of extinction peaks red-shift from 460 to 630 nm when the radius of nanoparticles of hexagonal Ag arrays increases from 25 to 100 nm with the distance between particles 100 nm. The enhanced scattering cross section of the localized surface plasmon (LSP) and blue-shift of the extinction peak can be obtained by tunning the distance between Ag nanoparticles from 100 to 50 nm with the radius of Ag nanoparticles fixed at 50 and 75 nm, respectively. However the mismatch between the extinction peak of hexagonal Ag nanoarrays and the blue light emission of 460 nm from a-SiNx:O films still exists. The novel overlap between the scattering cross section of LSP from hexagonal Ag arrays with a radius of 25 nm and the blue light emission of a-SiNx:O films at 460 nm further confirms that the hexagnoal Ag arrays with a radius of 25 nm is the optimal option to enhance the blue light emission from a-SiNx:O films. Therefore, strong coupling between LSP and blue light emission at 460 nm from a-SiNx:O films with a thickness of 70 nm can be realized when the radius of Ag nanoparticle is 25 nm. We also investigate the enhancement of near field radiative intensity of LSP from hexagnoal Ag arrays with a radius of 25 nm. When the exci-tation wavelength is 460 nm, the maximum enhancement of near field intensity of LSP from hexagnoal Ag arrays with a radius of 25 nm reaches 1.46 × 10^4 V/m. The calculated polarization intensity and charge distribution of hexagonal Ag nanoparticle with a radius of 25 nm embedded in a-SiNx:O films reveal that the enhancement of electromagnetic field-intensity is through the dipolar plasmon coupling with the excitons in a-SiNx:O films in bright field mode under the excitation of 460 nm. Further calculation of perpendicular radiative intensity for LSP from the hexagonal Ag array with a radius of 25 nm embedded in a-SiNx:O films indicates that the maximum radiative intensity can be realized in a-SiNx:O matrix with an optimum thickness of 30 nm for a-SiNx:O films. Our theoretical calculations and analysis can provide valuable reference for the design of Si-base blue LED with light emission around 460 nm.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2015年第17期293-300,共8页 Acta Physica Sinica
基金 国家重点基础研究发展计划(批准号:2010CB934402 2013CB632101) 国家自然科学基金(批准号:61071008 60976001 11374143) 中央高校基本科研业务费专项资金(批准号:1095021030 1116021004 1114021005) 国家教育部博士点基金(批准号:20130091110024) 江苏高校优势学科建设工程资助的课题~~
关键词 局域表面等离激元 纳米银六角阵列 极化模式 有效辐射空间 localized surface plasmon hexagonal Ag nanoarrays polarization mode optimum radiative space
  • 相关文献

参考文献1

二级参考文献54

  • 1Willets K A, Van Duyne R P. Annu. Rev. Phys. Chem. , 2007, 58: 267.
  • 2MayerK M, HMnerJ H. Chem. Rev., 2011, 111:3828.
  • 3RitchieRH. Phys. Rev., 1957, 106:874.
  • 4Brongersma M L,Shalaev V M. Science, 2010, 328: 440.
  • 5Ozhay E. Science, 2006, 311: 189.
  • 6Atwater H A,Polman A. Nat. Mater. , 2010, 9:205.
  • 7Bohren C F, Huffman D R. Absorption and Scattering of Light by Small Particles. John Wiley Sons, 1983.
  • 8Zayats A V, Smolyaninov I I, Maradudin A A. Phys. Rep. , 2005, 408:131.
  • 9Homola J, Yee S S, Gauglitz G. Sensor. Actuat. B-Chem. , 1999, 54: 3.
  • 10Homola J. Chem. Rev. , 2008, 108: 462.

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部