期刊文献+

Gd掺杂ZnO纳米线磁耦合性质的第一性原理研究 被引量:7

Magnetic coupling properties of Gd-doped ZnO nanowires studied by first-principles calculations
下载PDF
导出
摘要 本文利用基于密度泛函理论的第一性原理方法计算了钆(Gd)掺杂氧化锌(ZnO)纳米线的磁耦合特性.讨论了两个Gd原子替换ZnO纳米线中不同位置Zn原子的各种可能情况.计算发现,ZnO中掺杂的Gd原子处于相邻的位置时它们之间的相互作用是铁磁性的,并且体系的铁磁性可以通过注入合适数目的电子来得到加强.同时发现Gd掺杂ZnO纳米线后s-f耦合作用变得显著,使得体系的铁磁性变得更加稳定,这也是Gd掺杂ZnO纳米线呈现铁磁性的原因.这些结果为实验上发现的Gd掺杂ZnO纳米线呈铁磁性提供了理论依据. Magnetic coupling properties of Gd-doped ZnO nanowires are studied theoretically by using first-principles calcu-lations. Several positions of Zn atoms that may be substituted by Gd atoms in ZnO nanowires are discussed. Numerical results show that the magnetic coupling is ferromagnetic when the two Gd atoms doped in ZnO nanowires are near each other. Injection of suitable amount of electrons can enforce these ferromagnetic properties in Gd-doped ZnO nanowires. It is also found that s-f coupling becomes remarkable when the Gd atoms are doped in ZnO nanowires, making the ferromagnetic coupling state more stable than the anti-ferromagnetic coupling state, and this is also the mechanism to elucidate the origination of ferromagnetic state in Gd-doped ZnO nanowires in experiments. These results will give a theoretical support for those who found experimentally that Gd-doped ZnO nanowires show ferromagnetic properties.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2015年第17期385-390,共6页 Acta Physica Sinica
基金 山东省高等学校科技计划项目(批准号:J13LA05) 山东省自然科学基金(批准号:ZR2014AM017)资助的课题~~
关键词 Gd掺杂Zn O纳米线 磁耦合 第一性原理 Gd-doped ZnO nanowire magnetic coupling first-principles calculations
  • 相关文献

参考文献31

  • 1Dietl T 2010 Nat. Mater. 9 965.
  • 2Lin W X, Weng Z Z, Zhang J M, Huang Z G 2011 Chin.Phys. B 20 027103.
  • 3Yi J B, Lim C C, Xing G Z, Fan H M, Van L H, Huang S L, Yang K S, Huang X L, Qin X B, Wang B Y, Wu T, Wang L, Zhang H T, Gao X Y, Liu T, Wee A T, Feng Y P, Ding J 2010 Phys. Rev. Lett. 104 137201.
  • 4Zheng Y 2013 Appl. Phys. A 112 241.
  • 5Sato K, Bergqvist L, Kudrnovsky J, Dederichs P H, Eriksson O, Turek I, Sanyal B, Bouzerar G, Katayama-Yoshida H, Dinh V A, Fukushima T, Kizaki H, Zeller R 2010 Rev. Mod. Phys. 82 1633.
  • 6Lu Y B, Dai Y, Guo M, Yu L, Huang B 2013 Phys. Chem. Chem. Phys. 15 5208.
  • 7Chen R, Ye Q L, He T, Ta V D, Ying Y, Tay Y Y, Wu T, Sun H 2013 Nano. Lett. 13 734.
  • 8Segura-Ruiz J, Martinez-Criado G, Chu M H, Geburt S, Ronning C 2011 Nano Lett. 11 5322.
  • 9Chen Q, Wang J L 2009 Chem. Phys. Lett. 474 336.
  • 10Banerjee S, Mandal M, Gayathrib N, Sardar M 2007 Appl. Phys. Lett. 91 182501.

同被引文献41

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部