期刊文献+

Synchronization of coupled chaotic Hindmarsh Rose neurons:An adaptive approach 被引量:2

Synchronization of coupled chaotic Hindmarsh Rose neurons:An adaptive approach
下载PDF
导出
摘要 In this paper, we consider the synchronization of chaotic Hindmarsh Rose(HR) neurons via a scalar control input.Chaotic HR neurons coupled with a gap junction are taken into consideration, and an active compensation mechanism-based adaptive control is employed to realize the synchronization of two HR neurons. As such an adaptive control is utilized,an accurate model of the system is of no necessity. Asymptotical synchronization of two HR neurons is guaranteed by theoretical results. Numerical results are also provided to confirm the proposed synchronization approach. In this paper, we consider the synchronization of chaotic Hindmarsh Rose(HR) neurons via a scalar control input.Chaotic HR neurons coupled with a gap junction are taken into consideration, and an active compensation mechanism-based adaptive control is employed to realize the synchronization of two HR neurons. As such an adaptive control is utilized,an accurate model of the system is of no necessity. Asymptotical synchronization of two HR neurons is guaranteed by theoretical results. Numerical results are also provided to confirm the proposed synchronization approach.
作者 魏伟
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第10期93-100,共8页 中国物理B(英文版)
基金 Project supported by the Beijing Natural Science Foundation,China(Grant No.4132005) the National Natural Science Foundation of China(Grant No.61403006) the Importation and Development of High-Caliber Talent Project of Beijing Municipal Institutions,China(Grant No.YETP1449) the Project of Scientific and Technological Innovation Platform,China(Grant No.PXM2015 014213 000063)
关键词 SYNCHRONIZATION Hindmarsh Rose neuron CHAOS adaptive control synchronization, Hindmarsh Rose neuron, chaos, adaptive control
  • 相关文献

参考文献30

  • 1Terry J R, Thornburg K S and DeShazer D J, et al. 1999 Phys. Rev. E 59 4036.
  • 2Yang X S and Cao J D 2010 Appl. Math. Model. 34 3631.
  • 3Chen G R and Dong X N 1998 From Chaos to Order – Methodologies, Perspectives and Applications (Singapore: World Scientific).
  • 4Meister M, Wong R O, Baylor D A and Shatz C J 1991 Science 252 939.
  • 5Kreiter A K and Singer W 1996 J. Neurosci. 16 2381.
  • 6Che Y Q, Wang J, Tsang K M and Chan W L 2010 Nonlinear Anal. Real World Appl. 11 1096.
  • 7Shuai J W and Durand D M 1999 Phys. Lett. A 264 289.
  • 8Hodgkin A L and Huxley A F 1952 J. Physiol. 117 500.
  • 9FitzhHugh R 1960 J. Gen. Physiol. 43 867.
  • 10Hindmarsh J L and Rose R M 1984 Proc. R. Soc. Lond. Ser. B 221 87.

同被引文献1

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部