期刊文献+

Influences of neutral oxygen vacancies and E′_1 centers on α-quartz

Influences of neutral oxygen vacancies and E′_1 centers on α-quartz
下载PDF
导出
摘要 Our calculations demonstrate that the concentration of neutral oxygen vacancies can affect the geometrical structrue,electronic structure, and optical properties of α-quartz. Moreover, the distribution of the neutral oxygen divacancy can also exert some influence on the properties of α-quartz. The dissimilarity and similarities are presented in the corresponding density of state(DOS) and absorption spectrum. In addition, when a higher defect concentration is involved in α-quartz,the influence of E1 center on the geometry of α-quartz becomes more significant. However, the introduction of an E1 center barely results in any improvement compared with the influence produced by the corresponding neutral defect. Our calculations demonstrate that the concentration of neutral oxygen vacancies can affect the geometrical structrue,electronic structure, and optical properties of α-quartz. Moreover, the distribution of the neutral oxygen divacancy can also exert some influence on the properties of α-quartz. The dissimilarity and similarities are presented in the corresponding density of state(DOS) and absorption spectrum. In addition, when a higher defect concentration is involved in α-quartz,the influence of E1 center on the geometry of α-quartz becomes more significant. However, the introduction of an E1 center barely results in any improvement compared with the influence produced by the corresponding neutral defect.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第10期373-379,共7页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China(Grant Nos.11176020 and 11374217) the Doctoral Program of Higher Education of China(Grant No.20100181110080)
关键词 α-Quartz neutral oxygen vacancy E′1 center concentration and distribution of defects α-Quartz, neutral oxygen vacancy, E′1 center, concentration and distribution of defects
  • 相关文献

参考文献47

  • 1Wang K P and Huang Y 2011 Chin. Phys. B 20 077401.
  • 2Wang H, Lin J J, He J Q, Liao Y L and Li S T 2013 Acta Phys. Sin. 62 226103 (in Chinese).
  • 3Zhou H B and Jin S 2013 Chin. Phys. B 22 076104.
  • 4Li F, Lu R F, Wu H P, Kan E J, Xiao C Y, Deng K M and Ellis D E 2013 Phys. Chem. Chem. Phys. 15 2692.
  • 5Liu Y, Liang P, Shu H B, Cao D, Dong Q M and Wang L 2014 Chin. Phys. B 23 067304.
  • 6Khan A, Rawat R S, Ahmad R and Shahid M A K 2013 Chin. Phys. B 22 127306.
  • 7Li R and Sun D H 2014Acta Phys. Sin. 63 056101 (in Chinese).
  • 8Chen X B, Hien N T M, Yang I S, Lee D and Nob T W 2012 Chin. Phys. Lett. 29 126103.
  • 9Griscom D L and Friebele E 1986 Phys. Rev. B 34 7524.
  • 10Kajihara K, likuta Y, Oto M, Hirano M, Skuja L and Hosono H 2004 Nucl. lnstrum. Method Phys. Res. B 218 323.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部