期刊文献+

An improved GGNMOS triggered SCR for high holding voltage ESD protection applications 被引量:2

An improved GGNMOS triggered SCR for high holding voltage ESD protection applications
下载PDF
导出
摘要 Developing an electrostatic discharge(ESD) protection device with a better latch-up immunity has been a challenging issue for the nanometer complementary metal-oxide semiconductor(CMOS) technology. In this work, an improved grounded-gate N-channel metal-oxide semiconductor(GGNMOS) transistor triggered silicon-controlled rectifier(SCR)structure, named GGSCR, is proposed for high holding voltage ESD protection applications. The GGSCR demonstrates a double snapback behavior as a result of progressive trigger-on of the GGNMOS and SCR. The double snapback makes the holding voltage increase from 3.43 V to 6.25 V as compared with the conventional low-voltage SCR. The TCAD simulations are carried out to verify the modes of operation of the device. Developing an electrostatic discharge(ESD) protection device with a better latch-up immunity has been a challenging issue for the nanometer complementary metal-oxide semiconductor(CMOS) technology. In this work, an improved grounded-gate N-channel metal-oxide semiconductor(GGNMOS) transistor triggered silicon-controlled rectifier(SCR)structure, named GGSCR, is proposed for high holding voltage ESD protection applications. The GGSCR demonstrates a double snapback behavior as a result of progressive trigger-on of the GGNMOS and SCR. The double snapback makes the holding voltage increase from 3.43 V to 6.25 V as compared with the conventional low-voltage SCR. The TCAD simulations are carried out to verify the modes of operation of the device.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第10期591-593,共3页 中国物理B(英文版)
关键词 electrostatic discharge holding voltage GGSCR electrostatic discharge, holding voltage, GGSCR
  • 相关文献

参考文献11

  • 1Ma J R, Ming Q and Zhang B 2015 Chin. Phys. B 24 047303.
  • 2Wang Y, Jia S, Chen Z J and Ji L J 2006 Chin. Phys. 15 2297.
  • 3Vashchenko V A, Concannon A, Marcel B T and Hopper P 2004 IEEE Trans. Dev. Mater. Reliab. 4 273.
  • 4Mergens M P J, Russ C C, Verhaege K G, Armer J, Jozwiak P C and Mohn R 2003 Microelectron. Reliab. 43 993.
  • 5Ker M D 1998 IEEE Trans. Electron Dev. 4 849.
  • 6Meneghesso G, Tazzoli A, Marino F A, Cordoni M and Colombo P 2008 Proc. 46th Annual IEEE International Reliability Physics Symposium, April 27-May 1, 2008, Phoenix AZ, USA, p. 3.
  • 7Liu Z W, Liou J J, Dong S R and Han Y 2010 IEEE Electron Dev. Lett. 31 845.
  • 8Dong S R, Wu J, Meng M, Zeng J, Han Y and Liou J J 2012 IEEE Electron Dev. Lett. 33 1345.
  • 9Zhang B, Chai C C and Yang Y T 2010 Acta Phys. Sin. 59 8070 (in Chinese).
  • 10Wu X P, Yang Y T, Gao H X, Dong G and Chai C C 2013 Acta Phys. Sin. 62 047203 (in Chinese).

同被引文献15

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部