期刊文献+

Hilbert空间中Lipschitz伪压缩映像的不动点的迭代构造方法

An Iterative Method of Fixed Points for Lipschitz and Pseudo-contractive Mappings in Hilbert Spaces
下载PDF
导出
摘要 引入一种新的迭代算法,可以构造Hilbert空间中Lipschitz伪压缩映像的不动点.所引入的新方法被证明是强收敛的,特别地获得Lipschitz伪压缩映像的极小范数不动点的构造方法. A new iterative algorithm is introduced to construct fixed points for Lipschitz pseudo-con- tractive mappings in Hilbert spaces. The algorithm is proved to be strongly convergent, in particular, a method for minimum-norm fixed point of Lipschitz pseudo-contractive mappings is obtained.
出处 《河北师范大学学报(自然科学版)》 CAS 2015年第5期377-382,共6页 Journal of Hebei Normal University:Natural Science
基金 国家自然科学基金(11071053)
关键词 Lipschitz伪压缩映像 不动点 迭代方法 强收敛 Lipschitz pseudo-contractive mapping fixed point iterative method strong convergence
  • 相关文献

参考文献10

  • 1TAKAHASHI W.Nonlinear Functional Analysis[M].Yokohama:Yokohama Publishers,2000.
  • 2REICH S.Weak Convergence Theorems for Nonexpansive Mappings in Banach Spaces[J].J Math Anal Appl,1979,75:274-276.
  • 3ISHIKAWA S.Fixed Points by a New Iteration Method[J].Proc Amer Math Soc,1974,44:147-150.
  • 4ZHOU H.Convergence Theorems of Fixed Points for Lipschitz Pseudo-contractionsin Hilbert Spaces[J].J Math Anal Appl,2008,343:546-556.
  • 5BRUCK J R E.A Strongly Convergent Iterative Solution of for a Maximal Monotone Operator in Hilbert Spaces[J].J Math Anal Appl,1974,48:114-126.
  • 6SCHU J.Approximating of Fixed points of Lipschitzian Pseudo-contractive Mappings[J].Houston J Math,1993,19:107-115.
  • 7CHIDUME C E,ZEGEYE H.Approximate Fixed Point Sequences and Convergence Theorems for Lipschitz Pseudo-contractive Maps[J].Proc Amer Math Soc,2004,132:831-840.
  • 8CEGIELSKI A.Iterative Methods for Fixed Point Problems in Hilbert Spaces[M].New York:Springer,2012.
  • 9XU H K.Viscosity Approximation Methods for Nonexpansive Mappings[J].J Math Anal Appl,2004,298:279-291.
  • 10刘立红,陈东青,周海云.Hilbert空间中严格伪压缩映像族公共不动点的迭代算法[J].河北师范大学学报(自然科学版),2011,35(4):343-345. 被引量:1

二级参考文献4

  • 1谈斌.几类非线性算子零点或不动点迭代算法研究[D].石家庄:军械工程学院,2004.
  • 2BAUSCHKE H H, COMBETTES P L. A Weak-to-strong Convergence Principle for Fejer-monotone Methods in Hilbert Spaces [ J ]. Mathematics of Operations Rresearch, 2001 (26) : 248-264.
  • 3NAKAJO K, TAKAHASHI W. Strong Convergence Theorems for Nonexpansive Mappings and Nonexpansive Semigroups [J ]. J Math Anal Appl,2003(27) :372-379.
  • 4MARINO G,XU H K. Weak and Strong Convergence Theorems for Strict Pseudo-contractions in Hilbert Spaces [J]. J Math Anal Appl,2007(32) :336-349.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部