期刊文献+

A Method of Estimating the Eigenstates of Density Operator

A Method of Estimating the Eigenstates of Density Operator
原文传递
导出
摘要 We describe a mathematical structure which corresponds to the eigenstates of a density operator. For an unknown density operator, we propose an estimating procedure which uses successive "yes/no" measurements to scan the Bloch sphere and approximately yields the eigenstates. This result is based on the quantum method of types and implies a relationship between the typical subspace and the Young frame. We describe a mathematical structure which corresponds to the eigenstates of a density operator. For an unknown density operator, we propose an estimating procedure which uses successive "yes/no" measurements to scan the Bloch sphere and approximately yields the eigenstates. This result is based on the quantum method of types and implies a relationship between the typical subspace and the Young frame.
作者 GAO Jingliang
出处 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2015年第5期386-390,共5页 武汉大学学报(自然科学英文版)
基金 Supported by the National Natural Science Foundation of China(61271174,61372076,61301178)
关键词 quantum state estimation EIGENSTATE density operator quantum state estimation eigenstate density operator
  • 相关文献

参考文献14

  • 1Bennett C H, Harrow A W, Lloyd S. Universal quantum data compression via nondestructive tomography[J]. Physical ReviewA, 2006, 73(3): 032336.
  • 2James D F V, Kwiat P G, Munro W J, et al. Measurement of qubits [J]. Physical Review A, 2001, 64(5): 052312.
  • 3Adamson R B A, Steinberg A M. Improving quantum state estimation with mutually unbiased bases[J]. Physical Review Letters, 2010, 105(3): 030406.
  • 4Lvovsky A I, Raymer M G. quantum-state tomography [J]. Continuous-variable optical Reviews of Modern Physics,2009, 81(1): 299.
  • 5Gross D, Liu Y K, Flammia S T, et al. Quantum state tomo- graphy via compressed sensing [J]. Physical Review Letters, 2010, 105(15): 150401.
  • 6Christandl M, Renner R. Reliable quantum state tomogra- phy[J]. PhysiealReview Letters, 2012, 109(12): 120403.
  • 7Keyl M, Werner R F. Estimating the spectrum of a density operator [J]. Physical Review A, 2001, 64(5): 052311.
  • 8Vidal G , Latorre J I, Pascual P, et al. Optimal minimal measurements of mixed states [J]. Physical Review A, 1999, 60(1): 126.
  • 9Keyl M. Quantum state estimation and large deviations [J]. Reviews in Mathematical Physics, 2006, 18(1): 19-60.
  • 10Bagan E, Ballester M A, Gill R D, et al. Optimal full estima- tion of qubit mixed states [J]. Physical Review A, 2006, 73(3): 032301.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部