期刊文献+

Exact Decoding Probability of Random Linear Network Coding for Combinatorial Networks

Exact Decoding Probability of Random Linear Network Coding for Combinatorial Networks
原文传递
导出
摘要 Combinatorial networks are widely applied in many practical scenarios. In this paper, we compute the closed-form probability expressions of successful decoding at a sink and at all sinks in the multicast scenario, in which one source sends messages to k destinations through m relays using random linear network coding over a Galois field. The formulation at a (all) sink(s) represents the impact of major parameters, i.e., the size of field, the number of relays (and sinks) and provides theoretical groundings to numerical results in the literature. Such condition maps to the receivers' capability to decode the original information and its mathematical characterization is helpful to design the coding. In addition, numerical results show that, under a fixed exact decoding probability, the required field size can be minimized. Combinatorial networks are widely applied in many practical scenarios. In this paper, we compute the closed-form probability expressions of successful decoding at a sink and at all sinks in the multicast scenario, in which one source sends messages to k destinations through m relays using random linear network coding over a Galois field. The formulation at a (all) sink(s) represents the impact of major parameters, i.e., the size of field, the number of relays (and sinks) and provides theoretical groundings to numerical results in the literature. Such condition maps to the receivers' capability to decode the original information and its mathematical characterization is helpful to design the coding. In addition, numerical results show that, under a fixed exact decoding probability, the required field size can be minimized.
作者 LI Fang
出处 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2015年第5期391-396,共6页 武汉大学学报(自然科学英文版)
基金 Supported by the National Natural Science Foundation of China(61271174,61301178) the Science and Technology Innovation Foundation of Xi’an(CXY1352WL28)
关键词 random linear network coding successful probability combinatorial networks random linear network coding successful probability combinatorial networks
  • 相关文献

参考文献19

  • 1Yeung R W, Zhang Z. Distributed source coding for satellite communications [J]. IEEE Transactions on Information Theory, 1999, 45(4): 1111-1120.
  • 2Ahlswede R, Cai N, Li S Y, et al. Network information flow[J]. IEEE Transactions on Information Theory, 2000, 46(4): 1204-1216.
  • 3Li S Y, Yeung R W, Cai N. Linear network coding[J]. IEEE Transactions on Information Theory, 2003, 49(2): 371-381.
  • 4Koetter R, M6dard M. An algebraic approach to network coding[J]. 1EEE/ACM Trans Network, 2003,11(5): 782-795.
  • 5Jaggi S, Sanders P, Chou P A, et al. Polynomial time algo- rithms for multicast network code construction[J]. IEEE Transactions on Information Theory, 2005, 51(6): 1973- 1982.
  • 6Fragouli C, Soljanin E. Network Coding Fundamentals[M]. Boston-Delft:Now Publishers Inc, 2007.
  • 7Yeung R W. Information Theory and Network Coding[M]. New York: Springer-Verlag, 2008.
  • 8Ho T, M'edard M, Shi J, et al. On randomized network cod-Ing[J]. Proceedings of the Annual Allerton Conference on Communication Control and Computing, 2003, 41(1):11-20.
  • 9Ho T, M'edard M, Koetter R, et al. A random linear network coding approach to multicast [J]. 1EEE Transactions on Information Theory, 2006, 52(10): 4413-4430.
  • 10Balli H, Yan X, Zhang Z. On randomized linear network co- des and their error correction capabilities[J]. 1EEE Transcti- ons on Information Theory, 2009, 55(7): 3148- 3160.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部