期刊文献+

基于椭圆正弦攻角运动振动翼的能量采集性能分析

Energy harvesting performance of an oscillatory foil with elliptic sine attack angle
原文传递
导出
摘要 振动翼作为一种有效的潮流能、风能换能装置,可将潮流或风的动能转化为机械动能推动电机发电。该文通过调整机翼的周期性垂向运动与旋转运动实现机翼与来流的有效攻角控制,来流对机翼的流体动升力可推动机械装置往复运动并转换为电机的转动。假定机翼表面的边界层极薄,黏性仅在边界层内部作用,泻出涡仅从机翼的尾缘处泻出,引入势流理论,采用边界元法与泻出涡模型模拟机翼边界层的外部流场。主要分析了机翼以椭圆正弦为有效攻角运动的振动运动的能量采集性能,计算NACA0012机翼在不同运动频率、振动幅值与有效攻角时的能量采集效率,并分析了椭圆正弦K参数对能量采集的影响,研究实现高效率能量采集的机理。 Oscillatory foil is an effective energy harvesting device to extract energy from incoming flow, including current and wind. By adjusting the periodical vertical and rotational motion, the effective attack angle can be controlled;and the fluid loads can be utilized to drive the reciprocating motion of mechanical device. Assuming that the boundary layer is thin and the viscosity only has effects within the layer, the velocity potential is introduced to simulate the outer fluid flow through boundary element method and vortex shedding scheme. The energy harvesting performance of NACA0012 foil in oscillatory motion, where the effective attack angle is elliptic sine function, is analyzed. The energy extraction efficiency at various heave amplitude, the effective attack angle and Strouhal number is calculated, the effects of K parameter on the energy efficiency have been analyzed;the mechanics to achieve high efficiency is investigated.
出处 《水动力学研究与进展(A辑)》 CSCD 北大核心 2015年第4期460-465,共6页 Chinese Journal of Hydrodynamics
基金 国家自然科学基金项目(51479044)~~
关键词 振动翼 能量采集 边界元 椭圆正弦函数 oscillatory foil energy harvesting boundary element elliptic sine function
  • 相关文献

参考文献11

  • 1张晓庆,王志东,张振山.二维摆动水翼仿生推进水动力性能研究[J].水动力学研究与进展(A辑),2006,21(5):632-639. 被引量:24
  • 2王涛.对称双翼沉浮振动推进性能研究[J].水动力学研究与进展(A辑),2009,24(5):647-653. 被引量:2
  • 3READ D A, HOVER F S, TRIANTAFYLLOU M S. Forces on oscillating foils for propulsion and maneuve- ring[J]. Journal of Fluids and Structures, 2003, 17: 163- 183.
  • 4XIAO Q, LIAO W, YANG S, et al. How motion traje- ctory affects energy extraction performance of a biomi- metic energy generator with an oscillating foil?[J]. Re- newable Energy, 2012, 37: 61-75.
  • 5LU K, XIE Y H, ZHANG D. Nonsinusoidal motion ef- fects on energy extraction performance of a flapping foil[J]. Renewable Energy, 2014, 64: 283-293.
  • 6ELL1NGTON C P, VANDERDERG C, WILMOTT A, et al. Leading edge vortices in insect flight[J]. Nature, 1996, 384: 626-630.
  • 7DICKINSON M H, LEHMANN F O, SANE S P. Wing rotation and the aerodynamic basis insect flight[J]. Scie- nce, 1999, 284: 54-60.
  • 8SHELDAHL R E, KLIMAS P C. Aerodynamic chara- cteristics of seven airfoil sections through 180 degrees angle of attack for use in aerodynamic analysis of ver- tical axis wind turbines[R]. Tech. Rep. SAND80-2114, Albuquerque, New Mexico: Sandia National Laborato- ries, 1981.
  • 9ASHRAF M A, YOUNG J, LAI J C S. Reynolds num- ber, thickness and camber effects on flapping airfoil propulsion[J]. Journal of Fluids and Structures, 2011, 27: 145-160.
  • 10XU G D, WU G X. Boundary element simulation of in- viscid flow around an oscillatory foil with vortex sheet[J]. Engineering Analysis with Boundary Elements, 2013, 37: 825-835.

二级参考文献17

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部