摘要
Apps are attracting more and more attention from both mobile and web platforms. Due to the self-organized nature of the current app marketplaces, the descriptions of apps are not formally written and contain a lot of noisy words and sentences. Thus, for most of the apps, the functions of them are not well documented and thus cannot be captured by app search engines easily. In this paper, we study the problem of inferring the real functions of an app by identifying the most informative words in its description. In order to utilize and integrate the diverse information of the app corpus in a proper way, we propose a probabilistic topic model to discover the latent data structure of the app corpus. The outputs of the topic model are further used to identify the function of an app and its most informative words. We verify the effectiveness of the proposed methods through extensive experiments on two real app datasets crawled from Google Play and Windows Phone Store, respectively.
Apps are attracting more and more attention from both mobile and web platforms. Due to the self-organized nature of the current app marketplaces, the descriptions of apps are not formally written and contain a lot of noisy words and sentences. Thus, for most of the apps, the functions of them are not well documented and thus cannot be captured by app search engines easily. In this paper, we study the problem of inferring the real functions of an app by identifying the most informative words in its description. In order to utilize and integrate the diverse information of the app corpus in a proper way, we propose a probabilistic topic model to discover the latent data structure of the app corpus. The outputs of the topic model are further used to identify the function of an app and its most informative words. We verify the effectiveness of the proposed methods through extensive experiments on two real app datasets crawled from Google Play and Windows Phone Store, respectively.
基金
the Hong Kong RGC Project under Grant No. N_HKUST637/13, the National Basic Research 973 Program of China under Grant No. 2014CB340303, the National Natural Science Foundation of China under Grant Nos. 61328202 and 61502021, Microsoft Research Asia Gift Grant, Google Faculty Award 2013, and Microsoft Research Asia Fellowship 2012.