期刊文献+

基于点云模型的低质汉字骨架提取算法

Algorithm of skeletonization of low- quality character based upon point cloud model
下载PDF
导出
摘要 低质汉字的骨架提取是骨架提取中的一个困难问题.在多种降质因素的影响下,传统骨架提取方法很难提取出"好"的骨架,本文提出利用点云模型提取低质汉字的骨架.点云模型不仅能够充分利用现有汉字的底层信息,也能够将低质汉字骨架提取转化成一个两步的优化问题.采用增量广义均值聚类方法提取出低质汉字的初始骨架;然后基于高层马可夫随机模型连接初始骨架.实验结果表明,本方法在多种降质因素影响的情况下也能够获得"好"的汉字骨架. Skeletonization of low -quality Chinese character ( LCC ) is a difficult problem . Since a variety of low -quality factors make traditional model cannot work properly .A novel model for LCC that is named point cloud model ( PCM ) was proposed in this paper .PCM can make full use of the existing underlying information of LCC , and the skeletonization of LCC was solved by a two-steps optimal problem.The primary skeleton segments (PSSs) of LCC were extracted based upon incremental generalized k-means clustering algorithm .The PSSs were combined within the framework of high -level Markov Model ( HMM ) .Experi-ments demonstratec the proposed method can generate “good” skeletons even in scenarios degraded with various disturbances .
作者 侯显玲
出处 《哈尔滨商业大学学报(自然科学版)》 CAS 2015年第4期491-496,共6页 Journal of Harbin University of Commerce:Natural Sciences Edition
关键词 低质汉字 骨架提取 点云模型 高层马可夫随机场 skeletonization low -quality Chinese character point cloud model ( PCM ) high-level markov model
  • 相关文献

参考文献15

  • 1LAM L,LEE S W,SUEN C Y.Thinning methodologies:A comprehensive survey[J].IEEE Trans.Pattern and Machine Intelligence,1992,14(9):869-885.
  • 2廖志武.2-D骨架提取算法研究进展[J].四川师范大学学报(自然科学版),2009,32(5):676-688. 被引量:13
  • 3KLETTE G.A comparative discussion of distance transforms and simple deformations in digital image processing(a survey)[J].Machine Graphics and Vision International Journal,2003,12(2):235-256.
  • 4CAGRI A.Disconnected skeletons for shape recognition[D].Mph thesis for Middle East Technical University,2005.
  • 5H LUM.Biological shape and visual science(Part 1)[J].J Theo Biol,1973,38:205-287.
  • 6TANG Y Y,YOU X G.Skeletonization of ribbon-like shapes based on a new wavelet function[J].IEEE Trans.Pattern and Machine Intelligence,2003,25(9):1118-1133.
  • 7YOU X G,CHEN Q,FANG B,et al.Thinning character using modulus minima of wavelet transform[J].International Journal of Pattern Recognition and Artificial Intelligence,2006,20(3):361-375.
  • 8YOU X G,TANG Y Y.Wavelet-based approach to character skeleton[J].IEEE Transactions on Image Processiong,2007,16(5):1220-1231.
  • 9SIMON J C.A complemental approach to feature detection[C]//From Pixels to Features,Amsterdam:Elsevier Science,Netherlands,1989:229-236.
  • 10ZOU J J,YAN H.Skeletonization of ribbon-like shapes based on regularity and singularity analyses[J].IEEE Trans Syst Man Cybern,2001,31B(3):401-407.

二级参考文献5

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部