期刊文献+

烧结矿FeO神经网络实时预测模型的工程实现 被引量:1

Sinter Fe O Neural Network Forecasting Model Works to Achieve Real-time
下载PDF
导出
摘要 基于径向基函数神经网络的烧结矿Fe O实时预测模型是目前为止较好的预测模型,前人对它的研究主要在理论分析及计算机仿真研究阶段,前人的研究成果指出了其良好的应用前景;为将其应用于钢铁生产过程的实时控制,本文对神经网络模型的工程实施进行了研究;不同的应用场合,实现神经网络模型的软件及硬件平台也各不相同。本文详细阐述了基于Neurosystems软件平台以及S7-400 PLC硬件平台的基于径向基函数神经网络的烧结矿Fe O实时预测模型的实现技术。 Sinter FeO based real-time forecasting model based on radial basis function neural network is a far better forecasting models, previous studies of its main theoretical analysis and computer simulation in the research stage, the results of previous research points out the good application prospects; to apply it to real-time control of steel production process, this paper neural network model implementation of the project has been studied; different applications, implementing software and hardware platform for the neural network model is also different. This paper describes the implementation technology sinter FeO based on RBF neural network forecasting model Neurosystems real-time software platforms and S7-400 PLC hardware platform.
出处 《可编程控制器与工厂自动化(PLC FA)》 2015年第8期94-96,87,共4页 Programmable controller & Factory Automation(PLC & FA)
关键词 径向基函数 神经网络模型 实时预测 Radial basis function Neural network model Live prediction
  • 相关文献

同被引文献21

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部