期刊文献+

Asymptotic behavior of a tagged particle in the exclusion process on parallel lattices

Asymptotic behavior of a tagged particle in the exclusion process on parallel lattices
原文传递
导出
摘要 We investigate a tagged particle in the exclusion processes on {1,..., N }×Zd, with different densities in different levels {k} × Zd, ? k. Ignoring the level the tagged particle lying in, we only concern its position in Zd,denoted by Xt. Note that the whole space is not homogeneous. We define the environment process viewed from the tagged particle, of which Xt can be expressed as a functional. It is called the tagged particle process. We show the ergodicity of the tagged particle process, then prove the strong law of large numbers. Furthermore, we show the central limit theorem of Xt provided the zero-mean condition. We investigate a tagged particle in the exclusion processes on {1,..., N }×Zd, with different densities in different levels {k} × Zd, ? k. Ignoring the level the tagged particle lying in, we only concern its position in Zd,denoted by Xt. Note that the whole space is not homogeneous. We define the environment process viewed from the tagged particle, of which Xt can be expressed as a functional. It is called the tagged particle process. We show the ergodicity of the tagged particle process, then prove the strong law of large numbers. Furthermore, we show the central limit theorem of Xt provided the zero-mean condition.
作者 ZHANG FuXi
出处 《Science China Mathematics》 SCIE CSCD 2015年第10期2069-2080,共12页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant No.11371040)
关键词 tagged particle process strong law of large numbers central limit theorem 标记 粒子 渐近行为 上排 平行 中心极限定理 强大数定律 环境过程
  • 相关文献

参考文献15

  • 1Arratia R. The motion of a tagged particle in the simple symmetric exclusion system on Z1. Ann Probab, 1983, 11 362-373.
  • 2Bramson M, Liggett T M. Exclusion processes in high dimensions: Stationary measures and convergence. Ann Probab 2005, 33:2255-2313.
  • 3Da Prato G, Zabczyk J. Ergodicity for Infinite Dimensional Systems. Cambridge: Cambridge University Press, 1996.
  • 4Feller W. An Introduction to Probability Theory and Its Applications, 2nd ed. New York: John Wiley Sons, 1971.
  • 5Kallenberg O. Foundations of Modern Probability, 2nd ed. New York: Springer-Verlag, 2002.
  • 6Kipnis C. Central limit theorems for infinite series of queues and applications to simple exclusion. Ann Probab, 1986, 14:397-408.
  • 7Kipnis C, Varadhan S R S. Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Comm Math Phys, 1986, 104:1-19.
  • 8Komorowski T, Landim C, Olla S. Fluctuations in Markov Processes --- Time Symmetry and Martingale Approxima- tion. Berlin: Springer, 2012.
  • 9Lebowitz J L, Spohn H. Microscopic basis for Fick's law for self-diffusion. J Star Phys, 1982, 28:539-556.
  • 10Liggett T M. Interacting Particle Systems. New York: Springer-Verlag, 1985.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部