期刊文献+

Resonance and rapid decay of exponential sums of Fourier coefficients of a Maass form for GL_m(Z) 被引量:2

Resonance and rapid decay of exponential sums of Fourier coefficients of a Maass form for GL_m(Z)
原文传递
导出
摘要 Let f be a full-level cusp form for GLm(Z) with Fourier coefficients Af(n1,..., nm-1). In this paper,an asymptotic expansion of Voronoi's summation formula for Af(n1,..., nm-1) is established. As applications of this formula, a smoothly weighted average of Af(n, 1,..., 1) against e(α|n|β) is proved to be rapidly decayed when 0 < β < 1/m. When β = 1/m and α equals or approaches ±mq1/mfor a positive integer q, this smooth average has a main term of the size of |Af(1,..., 1, q) + Af(1,..., 1,-q)|X1/(2m)+1/2, which is a manifestation of resonance of oscillation exhibited by the Fourier coefficients Af(n, 1,..., 1). Similar estimate is also proved for a sharp-cut sum. Let f be a full-level cusp form for GLm(Z) with Fourier coefficients Af(n1,..., nm-1). In this paper,an asymptotic expansion of Voronoi’s summation formula for Af(n1,..., nm-1) is established. As applications of this formula, a smoothly weighted average of Af(n, 1,..., 1) against e(α|n|β) is proved to be rapidly decayed when 0 〈 β 〈 1/m. When β = 1/m and α equals or approaches ±mq1/mfor a positive integer q, this smooth average has a main term of the size of |Af(1,..., 1, q) + Af(1,..., 1,-q)|X1/(2m)+1/2, which is a manifestation of resonance of oscillation exhibited by the Fourier coefficients Af(n, 1,..., 1). Similar estimate is also proved for a sharp-cut sum.
出处 《Science China Mathematics》 SCIE CSCD 2015年第10期2105-2124,共20页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant No.10971119) Program for Changjiang Scolars and Innovative Research Team in University(Grant No.1264)
关键词 cusp form for GLm(Z) Voronoi’s summation formula Fourier coefficient of cusp forms RESONANCE 傅里叶系数 Maas 衰减 指数和 Voronoi s形 求和公式 加权平均
  • 相关文献

参考文献1

二级参考文献17

  • 1Jianya Liu,Yonghui Wang,Yangbo Ye.A proof of Selberg’s orthogonality for automorphic L-functions[J]. manuscripta mathematica . 2005 (2)
  • 2Stephen D. Miller,Wilfried Schmid.The Highly Oscillatory Behavior of Automorphic Distributions for SL(2)[J]. Letters in Mathematical Physics . 2004 (1)
  • 3Jianya Liu,Yangbo Ye.Subconvexity for Rankin-Selberg L-Functions of Maass Forms[J]. Geometrical and Functional Analysis GAFA . 2002 (6)
  • 4Henryk Iwaniec,Wenzhi Luo,Peter Sarnak.Low lying zeros of families of L-functions[J]. Publications Mathématiques de l’Institut des Hautes Scientifiques . 2000 (1)
  • 5James Lee Hafner.Some remarks on odd maass wave forms (and a correction to )[J]. Mathematische Zeitschrift . 1987 (1)
  • 6Hua L G.Introduction to Number Theory (with an appendix by Yuan Wang). . 1975
  • 7Kim H,Sarnak P.Appendix 2: Rened estimates towards the Ramanujan and Selberg conjectures. Journal of the American Mathematical Society . 2003
  • 8Sun Q F.On cusp form coefficients in nonlinear exponential sums. The Quarterly Journal of MaThematics Oxford .
  • 9Wu J,Ye Y B.Hypothesis H and the prime number theorem for automorphic representations. Functiones et Approx-imatio Commentarii Mathematici . 2007
  • 10Iwaniec H,,Kowalski E.Analytic Number Theory. Colloquium Publ. 53 . 2004

共引文献8

同被引文献3

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部