期刊文献+

超声波与氯胺联用工艺去除水中三氯生的研究 被引量:7

Degradation of triclosan in aqueous solution by using ultrasound combined with chloramine
下载PDF
导出
摘要 采用超声与氯胺联用工艺对水中三氯生(TCS)的去除进行了研究,考察了超声功率、氯胺投加量、TCS初始浓度、p H值和自由基捕获剂等因素对TCS去除的影响,鉴定识别了降解产物并探讨联用工艺降解TCS的机理.结果表明,超声和氯胺联用去除TCS具有协同效应,可以有效地去除TCS.超声波功率为600W,TCS浓度为200μg/L,氯胺浓度为5mg/L时,120min后TCS去除率可达90.8%.联用工艺中增加超声功率可以提高TCS的去除,TCS的去除率随氯胺浓度升高呈现出先升高后降低的趋势,随着初始浓度的升高而下降,碱性环境有利于TCS的去除,p H值为10.7时,TCS的去除可达100%,自由基捕获剂叔丁醇TBA对TCS的去除有抑制作用.GC/MS扫描分析表明2,4-二氯苯酚(2,4-DCP)为TCS的降解产物. Ultrasound and chloramine combined process was employed in this paper to remove triclosan (TCS) in aqueous solution. The effects of several factors such as ultrasonic power, chloramine dosage, TCS initial concentration, pH and radical scavenger on TCS degradation were studied. Furthermore, the degradation products were identified and the degradation mechanism of TCS by combined process was discussed. The results indicated that the combination of ultrasound and chloramine can remove TCS effectively and possess significant synergetic effect on the degradation. The degradation rate of TCS could reach 90.8% within 120min under the conditions of ultrasonic power 600W, TCS initial concentration of 200μg/L, and chloramine dosage of 5mg/L. TCS degradation efficiency decreased with the raise of initial concentration of TCS, and tended to increase firstly and then decrease with the increase of chloramine concentration. Alkaline environment was conducive to the TCS removal, and the degration efficiency of TCS could reach 100% when pH value was 10.7. The presence of free radical scavenger TBA had an inhibitory effect on TCS degradation. The identification and recognition of degradation products by GC/MS indicated 2,4-dichlorophenol (2,4-DCP) was the main degradation products of TCS during the combined process.
出处 《中国环境科学》 EI CAS CSCD 北大核心 2015年第9期2670-2676,共7页 China Environmental Science
基金 国家自然基金项目(51378446 51208468 51309197) 福建自然基金项目(2013J01212) 福建高校新世纪优秀人才计划项目(JA14227) 厦门市科技局项目(3502Z20131157 3502Z20130039)
关键词 三氯生 超声 氯胺 降解产物 triclosan ultrasound chloramine degradation product
  • 相关文献

参考文献36

  • 1Singer H, Muller S, Tixier C, et al. Triclosan: occurrence and fate of a widely used biocidc in the aquatic environment: field measurements in wastewater treatment plants, surface waters, and lake sediments [J]. Environ. Sci. Technol., 2002,36(23):4998- 5004.
  • 2Von der Ohe P C, Schmitt-Jansen M, Slobodnik J, et al. Triclosan -the forgotten priority substance? [J]. Environ. Sci. Pollut. R., 2012,19(2):585-591.
  • 3Ingerslev F, Vaclavik E, Hailing B. Sarensen. Pharmaceuticals and personal care products: a source of endocrine disruption in the envirogrnent?* [J]. Pure Appl. Chem., 2003,75(11/12): 1881-1893.
  • 4Canosa P, Morales S, Rodriguez I, et al. Aquatic degradation of triclosan and formation of toxic chlorophenols in presence of low concentrations of free chlorine [J]. Anal. Bioanal Chem., 2005, 383(7/8): 1119-1126.
  • 5Lores M, Llompart M, Sanchez-Prado L, et al. Confirmation of the formation of dichlorodibenzo-p-dioxin in the photodegradation of triclosan by photo-SPME [J]. Anal. Bioanal. Chem., 2005,381(6):1294-1298.
  • 6Marshall R, Royer T. Pharmaceutical compounds and ecosystem function: an emerging research challenge for aquatic ecologists [J]. Ecosystems, 2012,15:867-880.
  • 7Braoudaki M, Hilton A C. Low level of cross-resistance between triclosan and antibiotics in Escherichia coil K-12and E.coli O55compared to E.coli O157 [J]. Fems Microbiol. Lett., 2004, 235(2):305-309.
  • 8Brausch J M, Rand G M. A review of personal care products in the aquatic environment: environmental concentrations and toxicity [J]. Chemosphere, 2011,82( 11): 1518-1532.
  • 9Schultz M M, Bartell S E, Schoenfuss H L. Effects of triclosan and triclocarban, two ubiquitous environmental contaminants,on anatomy, physiology, and behavior of the fathead minnow (pimephales promelas) [J]. Arch. Environ. Con. Tox., 2012,63(1): 114-124.
  • 10Yu J C, Kwong T. Y, Luo Q, Cai Z W. Photocatalytic oxidation oftriclosan [J]. Chemosphere, 2006,65(3):390-399.

二级参考文献35

  • 1陈涛,李彦文,莫测辉,高鹏,吴小莲,屈相龙.广州污水厂磺胺和喹诺酮抗生素污染特征研究[J].环境科学与技术,2010,33(6):144-147. 被引量:42
  • 2Suslick K S,Hammerton D A,Cline R E.The sonochemical hot spot[J].J.Am.Chem.Soc.,1986,108:5641-5642.
  • 3Hua I.Optimization of ultrasonic irradiation as an advanced oxidation technology[J].Environ.Sci.Technol.,1997,31(8):2237-2243.
  • 4Destaillats H.Degradation of alkylphenol ethoxylate surfactants in water with ultrasonic irradiatio[J].Environ.Sci.Technol.,2000,34(2):311-317.
  • 5国家环境保护局水和废水监测分析编辑委员会.水和废水监测分析方法[M].第3版.北京:中国环境科学出版社,1989.
  • 6Giamello E,Rumori P,Geobaldo F,et al.The interaction between hydrogen peroxide and metal oxides:EPR investigations[J].Appl.Magn.Reson.,1996,10:173-192.
  • 7Buxton G V,Greenstock C L,Helman W P,et al.Critical review of rate constants for reactions of hydrated electrons,hydrogen atoms and hydroxyl radicals (·OH/·O-) in aqueous solutions[J].J.Phys.Chem.Refer.Data,1988,17:513-886.
  • 8Kitajima N,Fukuzumi S I,Ono Y.Formation of superoxide ion during the decomposition of hydrogen peroxide on supported metal oxides[J].J.Phys.Chem.,1978,82:1505-1509.
  • 9Ternes T A,Joss A,Siegrist H. Scrutinizing pharmaceuticals and personal care products in wastewater treatment[J].Environmental Science and Technology,2004.392A-399A.
  • 10Karthikeyan K G,Meyer M T. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin USA[J].Science of the Total Environment,2006,(01):196-207.

共引文献27

同被引文献71

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部