期刊文献+

融合主题模型及多时间节点函数的用户兴趣预测研究 被引量:2

User Interest Prediction Combing Topic Model and Multi-time Function
原文传递
导出
摘要 【目的】针对用户兴趣随时间推移不断变化的问题,利用主题模型及时间节点函数预测用户兴趣。【方法】使用主题模型生成用户兴趣,针对用户的所有兴趣,分别利用多时间节点函数对每个兴趣的每次出现进行加权,用以预测用户兴趣在下一个时间节点的分布情况。【结果】在Sogou搜索日志上,与基于记忆的用户兴趣模型、基于遗忘曲线的用户兴趣度多阶段量化模型进行对比实验,余弦相似度及KL(Kullback-Leibler)距离均表明本文方法能较准确地预测用户兴趣。【局限】仅在Sogou搜索日志上进行实验测试,还需在其他数据集上进一步检验。【结论】充分考虑用户历史数据中每一个时间点可更准确地对用户兴趣进行预测。 [Objective] User interest is not static and it changes dynamically as time goes by, this paper proposes a user interest prediction model based on topic model and multi-time function. [Methods] Generate user interests by topic model, and calculate the weights of each user interest at every time point by applying multi-time function in order to predict user interest at next time point. [Results] Compared with memory-based user profile model and multi-step user profile model, cosine similarity and Kullback-Leibler divergence of the experimental results on search engine log data provided by Sogou Lab show that this model can predict user interests more effectively. [Limitations] The proposed method is only tested on search engine log data provided by Sogou Lab, and it need further examination on other data sets. [Conclusions] It is more effective to take every time point of user history data into consideration for user interest prediction.
出处 《现代图书情报技术》 CSSCI 2015年第9期9-16,共8页 New Technology of Library and Information Service
基金 教育部人文社会科学基地重大项目"面向细粒度的网络信息检索模型及框架构建研究"(项目编号:10JJD630014) 国家自然科学基金面上项目"面向词汇功能的学术文本语义识别与知识图谱构建"(项目编号:71473183)的研究成果之一
关键词 主题模型 时间函数 用户兴趣预测 Topic model Time function User interest Prediction
  • 相关文献

参考文献38

  • 1杨杰,陈恩红.面向个性化服务的用户兴趣偏移检测及处理方法[J].电子技术(上海),2009,36(11):72-76. 被引量:5
  • 2Ahmed A, Low Y, Aly M, et al. Scalable Distributed Inference of Dynamic User Interests for Behavioral Targeting [C]. In: Proceedings of the 17th ACM SIOKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2011: 114-122.
  • 3Veningston K, Shanmugalakshmi R. Combining User Interested Topic and Document Topic for Personalized Information Retrieval [A].//Big Data Analytics [M]. Springer International Publishing, 2014 Sakamoto S, Mikawa K, Goto 60-79.
  • 4M. A Study on Recommender System Based on Latent Class Model for High Dimensional and Sparse Data [C]. In: Proceedings of the 14th Asia Pacific Industrial Engineering and Management Society Conference, Cebu, Philippines. 2013.
  • 5Pennacchiotti M, Gurumurthy S. Investigating Topic Models for Social Media User Recommendation [C]. In: Proceedings of the 20th International Conference Companion on World Wide Web. ACM, 2011: 101-102.
  • 6Liu Q, Chen E H, Xiong H, et al. Enhancing Collaborative Filtering by User Interest Expansion via Personalized Ranking [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2012, 42(1): 218~233.
  • 7Mao Q, Feng B, Pan S. Modeling User Interests Using Topic Model [J]. Journal of Theoretical and Applied Information Technology, 2013, 48(1): 600-606.
  • 8Ding W, Chen C. Dynamic Topic Detection and Tracking: A Comparison of HDP, C-word, and Cocitation Methods [J]. Journal of the Association for Information Science and Technology, 2014, 65(10): 2084-2097.
  • 9Lee T Q, Park Y, Park Y T. A Time-Based Approach to Effective Recommender Systems Using Implicit Feedback [J]. Expert Systems with Applications, 2008, 34(4): 3055-3062.
  • 10Lee T Q, Park Y, Park Y T. An Empirical Study on Effectiveness of Temporal Information as Implicit Ratings [J]. Expert Systems with Applications, 2009, 36(2): 1315-1321.

二级参考文献93

  • 1宋丽哲,牛振东,余正涛,宋瀚涛,董祥军.一种基于混合模型的用户兴趣漂移方法[J].计算机工程,2006,32(1):4-6. 被引量:18
  • 2赵鹏,耿焕同,王清毅,蔡庆生.基于聚类和分类的个性化文章自动推荐系统的研究[J].南京大学学报(自然科学版),2006,42(5):512-518. 被引量:13
  • 3邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:148
  • 4郑先荣,曹先彬.线性逐步遗忘协同过滤算法的研究[J].计算机工程,2007,33(6):72-73. 被引量:25
  • 5Bonino D, Corno E A Real-time evolutionary algorithm for Web prediction. Proceedings of the 2003 IEEE/WIC International Conference on Web Intelligence. Halifax, Canada, Oct. 2003[C].
  • 6Shahabi C, Chen Y S. An adaptive recommendation system without explicit acquisition of user relevance feedback[J]. Distributed and Parallel Databases, 2003,14(2): 173-192.
  • 7Qiu F, Cho J. Automatic identification of user interest for personalized search[C]//Proceedings of the 15th International Conference on World Wide Web. 2006: 727-736.
  • 8Godoy D, Amandi A. Modeling user interests by conceptual clustering[J]. Information Systems, 2006,31(4-5):247-265.
  • 9Claypool M, Brown D. Inferring user interest[J]. IEEE Internet Computing, 2001,5(6):32-39.
  • 10Chen Y S, Shahabi C. Automatically improving the accuracy of user profiles with genetic algorithm. Proceedings of lASTED International Conference on Artificial Intelligence and Soft Computing. 2001 [C].

共引文献266

同被引文献23

引证文献2

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部