期刊文献+

逐日太阳总辐射估算方法研究进展 被引量:10

Advances in Daily Global Solar Radiation Estimating
下载PDF
导出
摘要 太阳总辐射作为地球表层上的物理、生物和化学过程的主要能量来源,也是生态系统过程模型、水文模拟模型和生物物理模型研究中的必要参数。长期以来由于地面辐射观测站点的数量稀少和分布不均匀,导致逐日太阳总辐射观测数据远远不能满足研究工作需要,在很大程度上限制了作物模拟模型等模型的运用。本文从站点估算、区域估算的角度,介绍了目前国内外逐日太阳总辐射估算的主要方法,包括随机模拟、卫星遥感估算和经验模型估算。根据应用实际需要,重点总结比较了逐日太阳总辐射的经验模型估算特点,讨论了现有太阳总辐射估算存在的问题及未来研究趋势。 Global solar radiation(Rs), as the energy source of physical, biological and chemical process on the earth surface, is an indispensible input parameter for ecosystem models, hydrological models and biophysical models. However, the daily observed Rs data is far from meeting the research needs and this have restrained the application of crop modeling, due to the limitation and uneven distribution of Rs stations. This paper reviewed the major Rs estimating models (i.e. stochastic simulation, satellite remote sensing based and empirical models) in China and broad at present from the perspective of site estimation and regional estimation. According to the practical requirements, empirical Rs estimating was particularly summarized and compared. The existing problems and future research trend also discussed in the current paper.
出处 《热带作物学报》 CSCD 北大核心 2015年第9期1727-1732,共6页 Chinese Journal of Tropical Crops
基金 海南耕地改良关键技术研究与示范专项(No.HNGDzy201503) 南繁区生物安全预警及监管平台建设与应用项目(No.201403075)
关键词 日照 气温 云量 遥感 区域化 Sunshine Air temperature Cloud Remote sensing Spatialization
  • 相关文献

参考文献67

  • 1Iqbal M. An introduction to solar radiation [M]. Toronto: Academic Press, 1983.
  • 2Maxwell EL. METSTART-the solar radiation model used in the production of the NSRDB[J]. Solar Energy, 1998, 62(4), 263- 279.
  • 3Gueymard C A. High Performance model for Clear-sky irradiance and illuminance[C]. ASES Conference, 2004: 251-258.
  • 4Page J K Proposed quality control procedures for the Meteorological Office data tapes relating to global solar radiation, diffuse solar relation, sunshine and cloud in the UK[C]. Report FCIBSE, 1997.
  • 5Hocaoglu F O. Stochastic approach for daily solar radiation modeling[J]. Solar Energy, 2011, 85(2): 278-287.
  • 6Ozgoren M, Bilgili M, Sahin B. Estimation of global solar radiation using ANN over Turkey [J]. Expert Systems with Applications, 2012, 39(5) : 5 043-5 051.
  • 7Behrang M A, Assareh E, Ghanbarzadeh A, et al, The potential of different artificial neural network (ANN) techniques in daily global solar radiation modeling based on meteorological data[J]. Solar Energy, 2010, 84(8): 1468-1480.
  • 8Amrouche B, Pivert X L. Artificial neural network based daily local forecasting for global solar radiation[J]. Applied Energy, 2014, 130: 333-341.
  • 9Chen J L, Li G S, Wu S J. Assessing the potential of support vector machine for estimating daily solar radiation using sunshine duration[J]. Energy Conversion and Management, 2013, 75: 311-318.
  • 10Mohammadi K, Shamshirband S, Anisi M H, et al. Support vector regression based prediction of global solar radiation on a horizontal surface [J]. Energy Conversion and Management, 2015, 91: 433-441.

二级参考文献39

共引文献137

同被引文献125

引证文献10

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部