期刊文献+

无标度网络上具有2个染病者仓室的SIR模型分析 被引量:3

An analysis of an SIR model with two infected groups on scale- free networks
下载PDF
导出
摘要 在无标度网络中建立和分析具有2个染病者仓室的SIR模型,首先计算得到基本再生数R0;证明了当R0<1时,无病平衡点是全局渐近稳定的;当R0>1时,存在唯一的地方病平衡点且疾病是持续性传染病.其次研究和比较网络上的2种免疫,得到在平均免疫率相同的条件下,目标免疫比随机免疫更有效.最后利用数值分析验证了主要结论. An S the basic reprod IR model with two infected groups is built and analyzed on scale -free network. First, we uction number Ro, and prove the globally asymptotically stability of disease - free equilib figure out rium when R0 〈 1, and the persistence of infection when Ro 〉 1. By comparing two immunization schemes, we find that targeted strategy is more efficient than proportional strategy for the same average immunization rate. At last, the numerical simulations verify our conclusions.
出处 《云南民族大学学报(自然科学版)》 CAS 2015年第5期386-391,共6页 Journal of Yunnan Minzu University:Natural Sciences Edition
基金 国家自然科学基金(11471197) 山西省自然科学基金(2014011005-1)
关键词 SIR模型 无标度网络 基本再生数 全局渐近稳定 免疫策略 SIR model scale - free network basic reproduction number globally asymptotically stability immuni- zation strategies
  • 相关文献

参考文献9

  • 1KERMACK W O,McKENDRICK A G. A contribution to the mathematical theory of epidemics[ C]//Proceedings of the Royal So- ciety of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, 1927,115 (772) :700 - 721.
  • 2ZHANG H, SMALL M, FU X, et al. Modeling the influence of information on the coevolution of contact networks and the dynamics of infectious diseases [ J ]. Physica D: Nonlinear Phenomena,2012,241 ( 18 ) : 1512 - 1517.
  • 3WANG Y, JIN Z, YANG Z, et al. Global analysis of an SIS model with an infective vector on complex networks [ J ]. Nonlinear A- nalysis: Real World Applications ,2012,13 ( 2 ) :543 - 557.
  • 4YUAN X, XUE Y, LIU M. Global stability of an SIR model with two susceptible groups on complex networks [ J ]. Chaos, Solitons and Fractals,2014,59:42 - 50.
  • 5VAN den DRIESSCHE P,WATMOUGH J. Reproduction numbers and sub -threshold endemic equilibria for compartmental mod- els of disease transmission [ J ]. Mathematical Biosciences,2002,180 ( 1 ) : 29 - 48.
  • 6LAJMANOVICH A, YORKE J A. A deterministic model for gonorrhea in a nonhomogeneous population [ J ]. Mathematical Biosci- ences, 1976,28 ( 3 ) :221 - 236.
  • 7LOU J, RUGGERI T. The dynamics of spreading and immune strategies of sexually transmitted diseases on scale - free network [ J ]. Journal of Mathematical Analysis and Applications,2010,365 ( 1 ) :210 - 219.
  • 8DIEKMANN O, HEESTERBEEK J A P, ROBERTS M G. The construction of next - generation matrices for compartmental epidem- ic models[J]. J R SOc Interface,2010(7) :873 -885.
  • 9DIEKMANN O, HEESTERBEEK J A P, METZ J A J. On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations [ J ]. Journal of Mathematical Biology, 1990,28 (4) :365 -382.

同被引文献21

  • 1LI X Z,ZHOU L L.Global stability of an SEIR epidemic model with vertical transmission and saturating contact rate[J].Chaos Solitons&Fractals,2009,40(2):874-884.
  • 2LIU J,ZHANG T.Epidemic spreading of an SEIRS model in scale-free networks[J].Communi-cations in Nonlinear Science&Numerical Simulation,2011,16(8):3375-3384.
  • 3KOROBEINIKOV A.Lyapunov functions and global properties for SEIR and SEIS epidemic models[J].Mathematical Medicine&Biology-a Journal of the Ima,2004,21(2):75-83.
  • 4ZHANG J P,JIN Z.The analysis of an epidemic model on networks[J].Applied Mathematics&Computation,2011,217(17):7053-7064.
  • 5MILLER J C.A note on a paper by Erik Volz:SIR dynamics in random networks[J].Journal of Mathematical Biology,2011,62(3):349-358.
  • 6MA J,VAN DEN DRIESSCHE P,WILLEBOORDSE F H.Effective degree household network disease model[J].Journal of Mathematical Biology,2013,66(1-2):75-94.
  • 7ZHANG J P,JIN Z.The analysis of an epidemic model on networks[J].Applied Mathematics and Computation,2011,217(17):7053-7064.
  • 8JIN Z,SUN G,ZHU H.Epidemic models for complex networks with demographics[J].Mathematical Biosciences and Engineering,2014,11(6):1295-1317.
  • 9SMITH H L.On the asymptotic behavior of a class of deterministic models of cooperating species[J].SIAM Journal on Applied Mathematics,1986,46(3):368-375.
  • 10VAN DEN DRIESSCHE P,WATMOUGH J.Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J].Mathematical Biosciences,2002,180(1):29-48.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部