期刊文献+

浸矿微生物共培养体系在氟胁迫下的基因调控机理探索

Gene Regulation Mechanism of a Bioleaching Microbial Co-culture upon Fluoride Stress
下载PDF
导出
摘要 为了探明混合浸矿微生物的耐氟性能及其基因调控机理,应用功能基因芯片(FGA-Ⅱ)研究了5株浸矿细菌(Acidithiobacillus ferrooxidans ATCC 23270,Leptospirillum ferriphilum YSK,Sulfobacillus thermosulfidooxidans ST,Acidithiobacills thiooxidans A01,Acidithiobacills caldus S1)所构成的共培养体系在4.8 mmol/L氟胁迫下的基因表达谱.结果表明,该共培养体系中与氟胁迫相关的基因主要涉及到硫代谢、细胞膜、电子传递、解毒、碳固定、氮代谢等多个方面功能的代谢途径,而且各个途径在短时间(<60 min)氟胁迫倾向于高效表达,而长时间(>120 min)氟胁迫各个途径更倾向于低效表达.芯片图谱分析表明,氟胁迫下共培养体系中起主导调节作用的是其中的优势种群,但是劣势种群在氟胁迫时很大程度上辅助了优势种群的生长及其氧化活性的保持. In order to explore the fluoride tolerance and the gene regulation mechanisms of mixed bioleaching microorganisms, the gene expression profile of a co-culture including five typical bioleaching strains (Acidithiobacillus ferrooxidans ATCC 23270, Leptospirillum ferriphilum YSK,Sulfobacillus thermosulfidoox ithiobacills caldus S1 ) upon 4.8 mmol/L idans ST,AcidithiobaciUs thiooxidans A01 ,Acidfluoride stress was investigated using the functional gene array. The results showed, the genes associated with fluoride stress were involved with sulfur metabolism, cell membrane, electron transport, detoxification, carbon fixation, nitrogen metabolism, and so on. Additionally, majority of genes was induced upon the short time ( 〈60 min) fluoride stress,while repressed upon the long time ( 〉 120 min) fluoride stress. The effects of fluoride stress on different microbial population in the co-cul- ture were different. The results revealed that the dominant species in the co-culture played the crucial role for resisting fluoride stress,while the minor species to a large extent assisted the oxidation ability preservation and growth of the dominant species.
出处 《南华大学学报(自然科学版)》 2015年第3期14-20,38,共8页 Journal of University of South China:Science and Technology
基金 湖南省自然科学基金资助项目(14JJ6024) 湖南省教育厅科研基金资助项目(13C821) 南华大学博士科研启动基金资助项目(2012XQD05)
关键词 浸矿微生物 共培养体系 氟胁迫 基因调控 bioleaching microorganisms co-culture fluoride stress gene regulation
  • 相关文献

参考文献19

  • 1Bruins M R, Kapil S, Oehme F W. Microbial resistance to metals in the environment [ J ]. Ecotoxicology and Envi- ronmental Safety ,2000,45 ( 3 ) : 198-207.
  • 2Dopson M, Baker-Austin C, Koppineedi P R, et al. Growth in sulfidie mineral environments:metal resistance mechanisms in acidophilic microorganisms [ J ]. Microbi- ology ,2003,149 ( 8 ) : 1959-1970.
  • 3马宏.氟化物对口腔微生物的生物学作用[J].北京口腔医学,1998,6(3):132-134. 被引量:16
  • 4Marquis R E, Clock S A, Mota-Meira M. Fluoride and or- ganic weak acids as modulators of microbial physiology [ J ]. FEMS Microbiology Reviews, 2003,26 ( 5 ) : 493-510.
  • 5李江,饶军,刘亚洁,孙占学,李学礼,史维浚.高氟铀矿石微生物堆浸工业试验[J].有色金属(冶炼部分),2011(7):26-29. 被引量:19
  • 6Akcil A, Ciftci H, Deveci H. Role and contribution of pure and mixed cultures of mesophiles in bioleaching of a pyritic chalcopyrite concentrate [ J ]. Minerals Engineer- ing,2007,20(3) :310-318.
  • 7Zhang R, Wei M, Ji H, et al. Application of real-time PCR to monitor population dynamics of defined mixed cultures of moderate thermophiles involved in bioleaching of chalcopyrite [ J ]. Applied Microbiology and Biotech- nology,2009,81 (6) :1161-1168.
  • 8Dopson M, Lindstrtim E B. Potential Role of Thiobacillus caldus in Arsenopyrite Bioleaching[ J]. Applied and En- vironmental Microbiology, 1999,65 ( 1 ) :36-40.
  • 9Okibe N, Johnson D B. Biooxidation of pyrite by defined mixed cultures of moderately thermophilic acidophiles in pH- controlled bioreactors: significance of microbial interactions [J]. Biotechnology and Bioengineering,2004,87(5):574-83.
  • 10Frgione J, Brown C S, Tilman D. Community assembly and invasion: An experimental test of neutral versus niche processes [ J ]. Proc. Nat. Acad. of Sci. USA, 2003,100(15) :8916-8920.

二级参考文献24

  • 1刘亚洁,李江,陈功新,刘艳.适应铀矿石的耐极低pH值氧化亚铁硫杆菌的诱变育种[J].矿产综合利用,2005(2):21-26. 被引量:11
  • 2刘亚洁,李江,陈功新,刘艳.紫外线诱变获得耐极低pH的氧化亚铁硫杆菌突变株[J].有色金属(冶炼部分),2005(3):6-9. 被引量:22
  • 3刘亚洁,李江,牛建国,李学礼,史淮浚,刘艳,贺笑余.铀矿石生物浸出中氟对铁-硫氧化细菌的影响[J].有色矿冶,2006,22(2):18-21. 被引量:19
  • 4Bryner L C, Anderson R. Microorganisms in leaching sulfide minerals[J]. Ind Eng Chem, 1957, 49: 1721- 1724.
  • 5Brierley J A, Brierley C L. Present and future commer- cial applications of biohydrometallurgy [J]. Hydromet- allurgy, 2001, 59:233- 239.
  • 6Marquis R E, Clock S A, Mota-Meira M. Fluoride and or- ganic weak acids as modulators of microbial Physiology [ J ]. FEMS Microbiology Reviews, 2003,26 : 493-510.
  • 7Rohwerder T, Gehrke T, Kinzler K, et al. Bioleaching re- view part A: fundamentals and mechanisms of bacterial metal sulfide oxidation [ J ]. Applied Microbiology and Bi- otechnology ,2003 ,63 (3) :239-248.
  • 8Kim S, Bae J, Park H, et al. Bioleaching of cadmium and nickel from synthetic sediments by AcidithiobaciUus fer- roox/dans[J]. Environmental Geochemistry and Health,2005,27 (3) :229-235.
  • 9Gholami R M, Borghei S M, Mousavi S M. Bacterial leac- hing of a spent Mo-Co-Ni refinery catalyst using Acidi- thiobacillus ferrooxidans and Acidithiobacillus thiooxidans [J]. Hydwmetallurgy,2011,106( 1 ) :26-31.
  • 10Chen D D, Lin J Q, Che Y Y, et al. Construction of re- combinant mercury resistant AcidithiobaciUus caldus [ J ]. Microbiological Research ,20 11,166 (7) : 515-520.

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部